
CSL Internal Note • October 28, 2003





Abstract

The Needham-Schroeder authentication protocol is specified in SAL and its
model checker is used to detect the flaw discovered by Gavin Lowe. The SAL sim-
ulator is used to further explore the model of the protocol. This provides a simple
illustration in the use of SAL for this domain.

i



Contents

1 Introduction 1
2 Specification in SAL 2
3 Analysis in SAL 9

3.tio1022(Ex)1(plor)1(ation)-333(in)-333(S)1(AL)]TJ
ET
1 0 0 1 118.758 0 cm
0 g 0 G
1 0 0 1 3.361 0 cm
BT
/F15 10.909 Tf 0 0 Td[(.)-500(.)-500(.)-499(.)-500(.)-500(.)-500(.)-499(.)-500(.)-500(.)-500(.)-500(.)-499(.)-500(.)-500(.)-500(.)-499(.)-500(.)-500(.)-500(.)-500(.)-499(.)-500(.)-500(.)-500(.)-499(.)-500(.)-500(.)]TJ
ET
1 0 0 1 246.608 0 cm
0 g 0 G
BT
/F15 10.909 Tf 0 010L







network{msg: TYPE;}: CONTEXT =
BEGIN

bufferstate: TYPE = {empty, full};
action: TYPE = {read, write, overwrite, copy};

network: MODULE =
BEGIN

INPUT act: action, inms: msg







the network and the message the action is applied to (relevant only for



that is addressed to i and encrypted with its key. In this case, it extracts the nonce
f7om the message, constructs the second me/F47 1age of the p7otocol, and



Next, we specify the behavior of the intruder(s); we allow more than one so the
module intruder is parameterized by the id x





We place the needhamschroeder context in a file of the same name and invoke
the SAL symbolic model checker as follows.

sal-smc needhamschroeder prop

Within a few seconds, this reports that prop is invalid and produces a coun-
terexample comprising 10 stepn. The counterexample trace is rather verbose, so I
provide an abbreviated version with commentary on each step in Figure 2. A similar
counterexample can be found using the bounded model checker.

sal-bmc needhamschroeder propThe counterexamples found by SAL are equivalent the one described in the intro-
duction.



Step 0: Initialization
------------------------------------------------------------------------
Step 1: a sends message 1 to e

pc[a] = waiting; pc[b] = sleeping;
responder[a] = e;





At each point, the state of the simulation is a set of states. The com-
mand (step!) picks one of these arbitrarily, and then computes all its succes-
sors, which then become the new current state of the simulation. The command
(display-curr-states) prints the current states, up to some maximum number





http://www.csl.sri.com/users/rushby/abstracts/needham03
http://www.csl.sri.com/users/rushby/abstracts/needham03


References


	Contents
	Introduction
	Specification in SAL
	Analysis in SAL
	Exploration in SAL

	Conclusion
	References

