
October 27, 2003

SALenv: Tutorial

Leonardo de Moura

Computer Science Laboratory • 333 Ravenswood Ave. • Menlo Park, CA 94025 • (650) 326-6200 • Facsimile: (650) 859-2844

Contents

1 Introduction 3
1.1 The SAL environment . 3
1.2 The SAL language . 3
1.3 Examples . 3
1.4 SALPATH . 4

2 A Simple Example 5
2.1 Simulator . 6
2.2 Path Finder . 9
2.3 Model Checking . 10

3 The Peterson Protocol 12
3.1 Path Finder . 13
3.2 Model Checking . 14

4 The Bakery Protocol 17
4.1 Path Finder . 21
4.2 Model Checking . 22

5 Synchronous Bus Arbiter 26
5.1 Model Checking . 28

2

Chapter 1

Introduction

The SAL environment (SALenv) provides an integrated environment and a set
of batch commands for the development and analysis of SAL specifications. This
tutorial provides a short introduction to the usage of the main functionalities
of SALenv.

1.1 The SAL environment

SALenv runs on PC systems running RedHat Linux or Windows XP (under
cygwin), and Solaris (SPARC) workstations. We also believe that the system
can be compiled for any UNIX variant. SALenv is implemented in Scheme and
C++, but it is not necessary to know any of these languages to effectively use
the system. Actually, basic notions of the Scheme language are necessary if you
intend to customize the behavior of SALenv.

1.2 The SAL language

The SAL language is not that different from the input languages used by vari-
ous other verification tools such as SMV, Murphi, Mocha, and SPIN. Like these
languages, SAL describes transition systems in terms of initialization and tran-
sition commands. These can be given by variable-wise definitions in the style
of SMV or as guarded commands in the style of Murphi.

1.3 Examples

In this tutorial we describe the SAL language by presenting some exam-
ples. A complete description of the SAL language is available online at
http://sal.csl.sri.com/. The abstract syntaxt tree of SAL is specified in
XML. The SALenv tools accept two concrete representations: SAL and LSAL.

3

Chapter 1. Introduction 4

LSAL is an alternative concrete representation for the SAL language. The sup-
port for LSAL is included in the SALenv distribution package.

1.4 SALPATH

All SALenv tools search for context files in the path specified by the environment
variable SALPATH. If you are using bash, then you should modify your .bashrc
file. For instance, to set SALPATH to the current and the /homes/leonardo/tmp
directories, you should add the following command to your .bashrc file:

export SALPATH=.:/homes/leonardo/tmp

If you are using tcsh, then you should modify your .cshrc file:

setenv SALPATH .:/homes/leonardo/tmp

If the environment variable SALPATH is not specified, then the tools will only
search for SAL context files in the current directory.

Chapter 2

A Simple Example

Consider the simple SAL specification in Figure 1. A SAL context is a “con-
tainer” of types, constants, and modules (i.e., transition systems). The specifica-
tion in Figure 1 specifies the context short, which contains a type (State), and
a module declaration (main). The type State is an enumerated type consisting
of two elements: ready, and busy. The module main specifies a transition sys-
tem which contains: a boolean input variable (request), and an output variable
(state) of type State. The variable state is initialized with the value ready.
The TRANSITION section specifies a “step” of the transition system. In SAL, the
notation X’ is used to denote the next value of the variable X. In the module
main, the next value of state is busy when the current value is ready and
the input request is true, otherwise the next value is any element in the set
{ready, busy} (remark: the IN construct is used to specify nondeterministic
assignments). Observe that a module can only specify the initial and next values
of controlled variables: output, local and global variables.

1short: CONTEXT =

BEGIN

State: TYPE = {ready, busy};

main: MODULE =

BEGIN

INPUT request : BOOLEAN

OUTPUT state : State

INITIALIZATION

state = ready

TRANSITION

state’ IN IF (state = ready) AND request THEN

{busy}
ELSE

{ready, busy}
ENDIF

END;

END

5

Chapter 2. A Simple Example 6

Figure 2 contains the specification of the context short using LSAL syntax.
The distribution package of SALenv contains a Emacs mode for LSAL files, it
is located in the directory etc.

2(context short () ()

(define-type State (scalar ready busy))

(define-module main

(begin

(input request::bool)

(output state::State)

(initialization

(= state ready))

(transition

(in state’ (cond

((and (= state ready) request)

(set-list busy))

(else

(set-list ready busy)))))))

)

Both versions of the context short are available in the SALenv distribution
package in the examples directory. Observe that it is necessary to have a
SAL parser to use SAL files in SALenv, since the distribution package only
comes with a LSAL parser. A SAL parser (sal2xml) is available online at
http://sal.csl.sri.com/.

2.1 Simulator

SALenv contains a simulator for finite state specifications based on BDDs. The
simulator allows users to explore different execution paths of a SAL specification.
In this way, users can increase their confidence in their model before performing
verification. Actually, the SALenv simulator is not a regular simulator, since it
is scriptable, that is, users can use the Scheme programming language to im-
plement new simulation and verification procedures, and to automate repetitive
tasks.

Now, assuming that the current directory contains the file short.sal (or
short.lsal), and the SALenv tools are in the PATH, the simulator can be started
executing the command sal-sim. The symbol % is used to represent the system
prompt.

% sal-sim

SAL Simulator (Version 2.0). Copyright (c) 2003 SRI International.

Build date: Thu Jul 31 15:35:39 PDT 2003

Type ‘(exit)’ to exit.

Type ‘(help)’ for help.

sal >

Chapter 2. A Simple Example 7

Now, users can import the context short using the command:

sal > (import! "short")

Command (help-commands) prints the main commands available in the
simulator. The following commmand can be used to start the simulation of the
module main.

sal > (start-simulation! "main")

The simulation initialized by command start-simulation! is composed
of: a current trace, a current finite state machine, and a set of already visited
states. Actually, the “current trace” may represent a set of traces, since a
trace is list of set of states. Command (display-curr-trace) prints one of
the traces in the “current trace”. Initially, the “current trace” contains just
the set of initial states. We say the first element in the list “current trace”
is the set of current states. Command (display-curr-states) displays the
set of current states, its default behavior is to print at most 10 states, but
(display-curr-states <num>) can be used to print at most <num> states.
Command (display-curr-states) assigns an index (positive number) to the
printed states. Then, users can use this index to peek at a specific state using
the command (select-state! <idx>), which restricts the set of current states
to the single selected state.

sal > (display-curr-states)

State 1

--- Input Variables (assignments) ---

(= request true);

--- System Variables (assignments) ---

(= state ready);

State 2

--- Input Variables (assignments) ---

(= request false);

--- System Variables (assignments) ---

(= state ready);

sal > (select-state! 1)

sal > (display-curr-states)

State 1

--- Input Variables (assignments) ---

(= request true);

--- System Variables (assignments) ---

(= state ready);

Chapter 2. A Simple Example 8

Command (step!) performs a simulation step, that is, it appends the suc-
cessors of the set of current states in the current trace. Clearly, the set of current
states is also updated.

sal > (step!)

sal > (display-curr-trace)

Step 0:

--- Input Variables (assignments) ---

(= request true);

--- System Variables (assignments) ---

(= state ready);

Step 1:

--- Input Variables (assignments) ---

(= request false);

--- System Variables (assignments) ---

(= state busy);

Command (filter-curr-states! <constraint>) provides an alterna-
tive way to select a subset of the set of current states. The argument of
filter-curr-states! is a BDD or a SAL expression. The new set of cur-
rent states will contain only states that satisfy the given constraint.

sal > (filter-curr-states! "(not request)")

sal > (display-curr-states)

State 1

--- Input Variables (assignments) ---

(= request false);

--- System Variables (assignments) ---

(= state busy);

As described before, users can automate repetitive tasks using the Scheme
programming language. For instance, the following example shows how to define
a new command called (n-step! n):

Chapter 2. A Simple Example 9

sal > (define (n-step! n)

(when (> n 0)

(select-state! 1)

(step!)

(n-step! (- n 1))))

sal > (n-step! 3)

sal > (display-curr-trace)

Step 0:

--- Input Variables (assignments) ---

(= request true);

--- System Variables (assignments) ---

(= state ready);

...

Step 4:

--- Input Variables (assignments) ---

(= request true);

--- System Variables (assignments) ---

(= state ready);

User defined commands such as (n-step! n) can be stored in files and
loaded in the simulator using command (load "<file-name>").

Command (sal/reset!) forces garbage collection and reinitializes all datas-
tructures (e.g., caches) used by the simulator. It is useful to call (sal/reset!)
before starting the simulation of a different module.

2.2 Path Finder

The sal-path-finder is a random trace generator for SAL modules based on
SAT solving. For instance, the following command produces a trace for the
module main located in the context short.

Chapter 2. A Simple Example 10

% sal-path-finder short main

========================

Path

========================

Step 0:

--- Input Variables (assignments) ---

request = false;

--- System Variables (assignments) ---

state = ready;

...

Step 10:

--- Input Variables (assignments) ---

request = false;

--- System Variables (assignments) ---

state = ready;

The default behavior of sal-path-finder is to produce a trace with 10
transitions. The option --depth=<num> can be used to control the length of the
trace.

% sal-path-finder --depth=5 short main

...

2.3 Model Checking

SALenv contains a symbolic model checker called sal-smc. sal-smc allows
users to specify properties in linear temporal logic (LTL), and computation tree
logic (CTL). However, in the current version SALenv does not print counterex-
amples for CTL properties. When users specify an invalid property in LTL, a
counterexample is produced. LTL formulas state properties about each linear
path induced by a module (transition system). Typical LTL operators are:

• G(p) (read “always p”), stating that p is always true.

• F(p) (read “eventually p”), stating that p will be eventually true.

• U(p,q) (read “p until q”), stating that p holds until a state is reached
where q holds.

• X(p) (read “next p”), stating that p is true in the next state.

For instance, the formula G(p => F(q)) states that whenever p holds, q will
eventually hold. The formula G(F(p)) states that p holds infinitely often.

Typical CTL operators are:

• AG(p), stating that p is globally true.

• EG(p), stating that there is a path where p is continuously true.

Chapter 2. A Simple Example 11

• AF(p), stating that for all paths p is eventually true.

• EF(p), stating that there is a path where p is eventually true.

• AU(p,q), stating that in all paths p holds until a state is reached where q
holds.

• EU(p,q), stating that there is a path where p holds until a state is reached
where q holds.

• AX(p), stating that p holds in all successor states.

• EX(p), stating that there is a successor state where p holds.

Figure 3 contains three different ways to state the same property of the
module main. The third property uses the ltllib context, which defines several
“macros” for commonly used LTL patterns. ltllib!responds_to is a qualified
name in SAL, it is a reference to the function responds_to located in the context
ltllib.

3th1: THEOREM main |- AG(request => AF(state = busy));

th2: THEOREM main |- G(request => F(state = busy));

th3: THEOREM main |- ltllib!responds_to(state = busy, request);

These properties can be verified using the following commands:

% sal-smc short th1

proved.

% sal-smc short th2

proved.

% sal-smc short th3

proved.

SALenv also contains a bounded model checker called sal-bmc. This model
checker only supports LTL formulas, and it is basically used for refutation,
although it can produce proofs by induction for safety properties.

% sal-bmc short th2

no counterexample between depths: [0, 10].

% sal-bmc short th3

no counterexample between depths: [0, 10].

The default behavior is to look for counterexamples up to depth 10. The
option --depth=<num> can be used to control the depth of the search. The
option --iterative forces the model checker to use iterative deepening, and it
is useful to find the shortest counterexample for a given property.

% sal-bmc --depth=20 short th2

no counterexample between depths: [0, 20].

Chapter 3

The Peterson Protocol

In this chapter, we illustrate SAL model checking via a simplified version of Pe-
terson’s algorithm for 2-process mutual exclusion. The SAL and LSAL files for
this example are located in the following subdirectories in the SALenv distribu-
tion package: examples/peterson-sal and examples/peterson respectively.
The 2-process version of the mutual exclusion problem requires that two pro-
cesses are never simultaneously in their respective critical sections. The behavior
of each process is modeled by a SAL module. Actually, we use a parametric
SAL module to specify the behavior of both processes. The prefix pc denotes
program counter. When pc1 (pc2) is set to the value critical, process 1(2) is
in its critical section. The noncritical section has two self-explanatory phases:
sleeping and trying. Each process is allowed to observe whether or not the
other process is sleeping. The variables x1 and x2 control the access to the
critical section.

Figure 4 contains the specification of the context peterson. PC is an enumer-
ated type. This type consists of three values: sleeping, trying, and critical.
Since the behavior of the two processes in the Peterson’s protocol is quite sim-
ilar, a parametric SAL module (mutex) is used to specify them. In this way,
process[FALSE] describes the behavior of the first process, and process[TRUE]
the behavior of the other one. It is important to note that the variable pc1 in
the module process represents the program counter of the current process, and
pc2 the program counter of the other process. It is a good idea to label guarded
commands, since it helps us to understand the counterexamples. So, the follow-
ing labels are used: wakening, entering_critical, and leaving_critical.

12

Chapter 3. The Peterson Protocol 13

4peterson: CONTEXT =

BEGIN

PC: TYPE = sleeping, trying, critical;

process [tval : BOOLEAN]: MODULE =

BEGIN

INPUT pc2 : PC

INPUT x2 : BOOLEAN

OUTPUT pc1 : PC

OUTPUT x1 : BOOLEAN

INITIALIZATION

pc1 = sleeping

TRANSITION

[

wakening:

pc1 = sleeping --> pc1’ = trying; x1’ = x2 = tval

[]

entering_critical:

pc1 = trying AND (pc2 = sleeping OR x1 = (x2 /= tval))

--> pc1’ = critical

[]

leaving_critical:

pc1 = critical --> pc1’ = sleeping; x1’ = x2 = tval

]

END;

END

Initially, the program counter is set to sleeping. The transition section
is composed by three guarded commands which describe the three phases of
the algorithm. The entire system is specified by performing the asynchronous
composition of two instances of the module process.

system: MODULE =

process[FALSE]

[]

RENAME pc2 TO pc1, pc1 TO pc2,

x2 TO x1, x1 TO x2

IN process[TRUE];

3.1 Path Finder

The following command can be used to obtain an execution trace (with 5 steps)
of the Peterson’s protocol.

% sal-path-finder -v 2 -d 5 peterson system

...

The option -v 2 sets the verbosity level to 2, the produced verbose messages
allow users to follow the steps performed by the SALenv tools. The option -d 5

Chapter 3. The Peterson Protocol 14

sets the number of execution steps. Figure 5 contains a fragment of the trace
produced by sal-path-finder. The trace contains detailed information about
each transition performed.

5Step 0:

--- System Variables (assignments) ---

pc1 = sleeping;

pc2 = sleeping;

x1 = false;

x2 = false;

Transition Information:

(module instance at [Context: scratch, line(1), column(11)]

(module instance at [Context: peterson, line(33), column(10)]

(label wakening

transition at [Context: peterson, line(14), column(10)])))

Step 1:

--- System Variables (assignments) ---

pc1 = sleeping;

pc2 = trying;

x1 = false;

x2 = false;

...

The following command uses ZCHAFF to obtain an execution trace (with
20 steps) of the Peterson’s protocol. You must have ZCHAFF installed in your
machine to use this command. ZCHAFF is not part of the SALenv distribution
package.

% sal-path-finder -v 2 -d 20 -s zchaff peterson system

...

3.2 Model Checking

The main property of the Peterson’s protocol is mutual-exclusion, that is, it is
not possible for more than one process to enter the critical section at the same
time. This safety property can be stated in the following way:

mutex: THEOREM system |- G(NOT(pc1 = critical AND pc2 = critical));

The following command can be used to prove this property.

% sal-smc -v 3 peterson mutex

In sal-smc, the default proof method for safety properties is forward reach-
ability. The option backward can be used to force sal-smc to perform backward
reachability.

Chapter 3. The Peterson Protocol 15

% sal-smc -v 3 --backward peterson mutex

...

proved.

In this example, backward reachability needs fewer iterations to reach the
fix point.

This property can also be proved using k-induction (option -i in sal-bmc).
Actually 2-induction is sufficient to prove this property.

% sal-bmc -v 3 -d 2 -i peterson mutex

...

proved.

It is important to note that there are several trivial algorithms that satisfy
the mutual exclusion property. For instance, an algorithm that all jobs do not
perform any transition. Therefore, it is important to prove liveness properties.
For instance, we can try to prove that every process reach the critical section
infinitely often. The following LTL formula states this property:

livenessbug1: THEOREM system |- G(F(pc1 = critical));

Before proving a liveness property, we must check if the transition relation is
total, that is, if every state has at least one successor. The model checkers may
produce unsound results when the transition relation is not total. The totality
property can be verified using the sal-deadlock-checker.

% sal-deadlock-checker -v 3 peterson system

...

ok (module does NOT contain deadlock states).

Now, we use sal-smc to check the property livenessbug1.

% sal-smc -v 3 peterson livenessbug1

...

Step 0:

...

========================

Begin of Cycle

========================

...

Unfortunately, this property is not true. A counterexample for a LTL liveness
property is always composed of a prefix, and a cycle. For instance, the coun-
terexample for the property livenessbug1 describes a cycle where the process
2 does not perform a transition.

There is not guarantee that sal-smc will produce the shortest counterexam-
ple for a liveness property. However, it is possible to use sal-bmc to produce
the shortest counterexample.

Chapter 3. The Peterson Protocol 16

% sal-bmc -v 3 -it peterson livenessbug1

...

Counterexample:

...

It is important to note that sal-bmc is usually more efficient for counterex-
ample detection.

Since, livenessbug1 is not a valid property, we can try to prove the weaker
liveness property:

liveness1: THEOREM system |- G(pc1 = trying => F(pc1 = critical));

This property states that if process 1 is trying to enter the critical section,
it will eventually succeed. The following command can be used to prove the
property:

% sal-smc -v 3 peterson liveness1

...

proved.

Chapter 4

The Bakery Protocol

In this chapter, we specify the bakery protocol. The SAL and LSAL files for this
example are located in the following subdirectories in the SALenv distribution
package: examples/bakery-sal and examples/bakery respectively. The basic
idea is that of a bakery, where customers (jobs) take numbers, and whoever has
the lowest number gets service next. Here, of course, “service” means entry to
the critical section. The version of the bakery protocol described in this chapter
is finite state, since we want to model-check it using sal-smc, and sal-bmc.
So, in our version there is a maximum “ticket” value. Figure 6 contains the the
header of the context bakery, and the type declarations. The context bakery
has two parameters: N is the number of (potential) customers, and B is the
maximum ticket value. Both values must be non-zero natural numbers. The
type Job_Idx is a subrange that is used to identify the customers. The type
Ticket_Idx is also a subrange, where 0 represents the “null” ticket. The type
of the next ticket to be issued (Next_Ticket_Idx) is also a subrange, where B+1
represents the “no ticket available” condition. The type of the “resources” of
the system (RSRC) is a record with two fields: data, an array which stores the
“ticket” of each job (customer); next-ticket, the value of the next ticket to be
issued. We say the system is saturated, when the field next_ticket is equals to
B+1. Each job (customer) has a control variable of type Job_PC, an enumerated
type consisting of the three values: sleeping, trying, and critical.

17

Chapter 4. The Bakery Protocol 18

6bakery{; N : nznat, B : nznat}: CONTEXT =

BEGIN

Job_Idx: TYPE = [1..N];

Ticket_Idx: TYPE = [0..B];

Next_Ticket_Idx: TYPE = [1..(B + 1)];

RSRC: TYPE = [# data: ARRAY Job_Idx OF Ticket_Idx,

next_ticket: Next_Ticket_Idx #];

Job_PC: TYPE = {sleeping, trying, critical};

...

END

Figure 7 contains auxiliary functions used to specify the bakery protocol.
Function min_non_zero_ticket returns the “ticket” of the job (customer) to
be “served”, the possible return values are:

• 0 when there is no job (customer) with a non-zero ticket (no customer
condition).

• n > 0, where n is the minimal (non-zero) ticket issued to a job (customer).

The auxiliary (recursive) function min_non_zero_ticket_aux is used to
traverse the array rsrc.data. The function min is a builtin function that
returns the minimum of two numbers. The function can_enter_critical?
returns true, when job_idx can enter the critical section by comparing the cus-
tomer’s ticket with the value returned by min_non_zero_ticket. The function
next_ticket issues a new ticket to the job job_idx, that is, it updates the array
rsrc.data at position job_idx, and increments the counter rsrs.next_ticket.
In SAL, expressions do not have side-effects. For instance, the update expres-
sion x WITH [idx] := v results in an array that is equals to x, except that at
position idx it takes the value v. The function reset_job_ticket assigns the
“null ticket” to the job job_idx. The function can_reset_ticket_counter
returns true, when it is safe to reset the rsrc.next_ticket counter.

Chapter 4. The Bakery Protocol 19

7min_non_zero_ticket_aux(rsrc : RSRC, idx : Job_Idx) : Ticket_Idx =

IF idx = N THEN rsrc.data[idx]

ELSE LET curr: Ticket_Idx = rsrc.data[idx],

rest: Ticket_Idx = min_non_zero_ticket_aux(rsrc, idx + 1)

IN IF curr = 0 THEN rest

ELSIF rest = 0 THEN curr

ELSE min(curr, rest)

ENDIF

ENDIF;

min_non_zero_ticket(rsrc : RSRC) : Ticket_Idx =

min_non_zero_ticket_aux(rsrc, 1);

can_enter_critical?(rsrc : RSRC, job_idx : Job_Idx): BOOLEAN =

LET min_ticket: Ticket_Idx = min_non_zero_ticket(rsrc),

job_ticket: Ticket_Idx = rsrc.data[job_idx]

IN job_ticket <= min_ticket;

saturated?(rsrc : RSRC): BOOLEAN =

rsrc.next_ticket = B + 1;

next_ticket(rsrc : RSRC, job_idx : Job_Idx): RSRC =

IF saturated?(rsrc) THEN rsrc

ELSE (rsrc WITH .data[job_idx] := rsrc.next_ticket)

WITH .next_ticket := rsrc.next_ticket + 1

ENDIF;

reset_job_ticket(rsrc : RSRC, job_idx : Job_Idx): RSRC =

rsrc WITH .data[job_idx] := 0;

can_reset_ticket_counter?(rsrc : RSRC): BOOLEAN =

(FORALL (j : Job_Idx): rsrc.data[j] = 0);

reset_ticket_counter(rsrc : RSRC): RSRC =

rsrc WITH .next_ticket := 1;

Since the behavior of each job (customer) is almost identical, we use a
parametric SAL module to specify them (Figure 8). In this way, job[1]
denotes the first job, job[2] the second, and so on. The local variable pc
contains the program counter of a job, and it is initialized with the value
sleeping. The global variable rsrc contains the shared “resources” of the sys-
tem. The transition section is specified using three labeled guarded commands:
wakening, entering_critical_section, and leaving_critical_section.
Labeled commands are particularly useful in the generation of readable coun-
terexamples. A guarded command is composed of a guard, and a sequence of
assignments. The guard is a boolean expression, and a guarded command is
said to be ready to execute when the guard is true. If more than one guarded
command is ready to execute, a nondeterministic choice is performed. For in-
stance, the guarded command wakening is ready to execute, when the current

Chapter 4. The Bakery Protocol 20

value of pc is sleeping, and the system is not “saturated”. If the next value of
a controlled (local, output, and global) variable x is not specified by a guarded
command, then x maintains its current value, that is, the guarded command
contains an “implicit” assignment x’ = x. For instance, in the guarded com-
mand entering_critical_section the variable rsrc is not modified.

8job [job_idx : Job_Idx]: MODULE =

BEGIN

GLOBAL rsrc : RSRC

LOCAL pc : Job_PC

INITIALIZATION

pc = sleeping

TRANSITION

[

wakening:

pc = sleeping AND NOT(saturated?(rsrc))

--> pc’ = trying;

rsrc’ = next_ticket(rsrc, job_idx)

[]

entering_critical_section:

pc = trying AND can_enter_critical?(rsrc, job_idx)

--> pc’ = critical

[]

leaving_critical_section:

pc = critical --> pc’ = sleeping;

rsrc’ = reset_job_ticket(rsrc, job_idx)

]

END;

Figure 9 specifies an auxiliary module that is used to initialize the shared
variable rsrc, and to reset the next-ticket counter when the system is “satu-
rated”. Note that the array literal [[j : Job_Idx] 0] is used to initialize the
field data.

9controller: MODULE =

BEGIN

GLOBAL rsrc : RSRC

INITIALIZATION

rsrc = (# data := [[j : Job_Idx] 0], next_ticket := 1 #)

TRANSITION

[

reseting_ticket_counter:

can_reset_ticket_counter?(rsrc)

--> rsrc’ = reset_ticket_counter(rsrc)

]

END;

The whole system is obtained by composing N instances of the module job,
and one instance of the module controller (Figure 10). The auxiliary module
jobs is the multi-asynchronous composition of N instances of job, since the type

Chapter 4. The Bakery Protocol 21

Job_Idx is a subrange [1..N]. Notice that each instance of job is initialized
with a different index. In a multi-asynchronous (and multi-synchronous) com-
position, all local variables are implicitly mapped to arrays. For instance, the
local variable pc of each job instance is implicitly mapped to pc[job_idx],
where the type of pc in the module jobs is ARRAY Job_Idx OF Job_PC. This
kind of mapping is necessary, since users may need to reference the local vari-
ables of different instances when specifying a property. The module system is
the asynchronous composition of the modules controller and jobs.

10jobs : MODULE = ([] (job_idx : Job_Idx): job[job_idx]);

system: MODULE = controller [] jobs;

The SAL and LSAL versions of the context bakery are available in the
SALenv distribution package in the examples directory.

4.1 Path Finder

The following command can be used to obtain a trace of an instance of the
bakery protocol with 3 jobs, and maximum ticket number equals to 7.

% sal-path-finder -v 2 --depth=5 --module="(@ system (bakery () (3 7)))"

...

The option -v 2 sets the verbosity level to 2, the produced verbose messages
allow users to follow the steps performed by the SALenv tools. The module to
be simulated is specified using the option --module because the context bakery
is parametric. LSAL syntax is used to specify a qualified module name in the
option --module.

Figure 11 contains a fragment of the trace produced by sal-path-finder.
The trace contains detailed information about each transition performed. For
instance, the first transition was performed by the guarded command wakening
of job 3 (job_idx = 3).

Chapter 4. The Bakery Protocol 22

11Step 0:

--- System Variables (assignments) ---

pc[1] = sleeping;

pc[2] = sleeping;

pc[3] = sleeping;

rsrc.data[1] = 0;

rsrc.data[2] = 0;

rsrc.data[3] = 0;

rsrc.next-ticket = 1;

Transition Information:

(module instance at [Context: scratch, line(1), column(11)]

(module instance at [Context: bakery, line(116), column(8)]

(label reseting-ticket-counter

transition at [Context: bakery, line(111), column(10)])))

Step 1:

--- System Variables (assignments) ---

pc[1] = sleeping;

pc[2] = sleeping;

pc[3] = sleeping;

rsrc.data[1] = 0;

rsrc.data[2] = 0;

rsrc.data[3] = 0;

rsrc.next-ticket = 1;

...

4.2 Model Checking

The main property of the bakery protocol is mutual-exclusion, that is, it is not
possible for more than one job to enter the critical section at the same time.
This safety property can be stated in the following way:

mutex: THEOREM

system |- G(NOT (EXISTS (i : Job_Idx, j : Job_Idx):

i /= j AND

pc[i] = critical AND

pc[j] = critical));

The following command can be used to prove this property for 5 customers
and maximum ticket value equals to 15.

% sal-smc -v 3 --assertion="(@ mutex (bakery () (5 15)))"

...

proved.

The assertion to be verified is specified using the option --assertion be-
cause the context bakery is parametric. In sal-smc, the default proof method

Chapter 4. The Bakery Protocol 23

for safety properties is forward reachability. The option backward can be used
to force sal-smc to perform backward reachability.

% sal-smc -v 3 --backward --assertion="(@ mutex (bakery () (5 15)))"

...

proved.

In this example, backward reachability needs fewer iterations to reach the
fix point, but it is less efficient, and consumes much more memory than forward
reachability.

The default behavior of sal-smc is to build a partitioned transition relation
composed of several BDDs. However, the option --monolithic forces sal-smc
(and sal-sim) to build a monolithic (a single BDD) transition relation. The op-
tion --cluster-size=<num> controls the generation of clusters in a partitioned
transition relation, the idea is that two clusters (BDDs) are only combined into
a single cluster if their sizes are below the threshold.

% sal-smc -v 3 --monolithic --assertion="(@ mutex (bakery () (5 15)))"

...

% sal-smc -v 3 --cluster-size=32768

--assertion="(@ mutex (bakery () (5 15)))"

...

In sal-smc the BDD variables are (re)ordered to minimize the size of the
BDDs. Variable (re)ordering is performed in the following stages of sal-smc.

• First, an initial (static) variable order is built. The option
--static-order=<name> sets the algorithm used to build the initial order.

• After the construction of the transition relation, one or more forced vari-
able reordering may be performed. The default behavior is one forced
variable reordering. The option --num-reorders=<num> sets the number
of variable reorderings. The option -r <name> sets the reordering strat-
egy (the default strategy is sift). Use the option --help to obtain the
available strategies.

• Dynamic variable reordering is not enabled, but the option
--enable-dynamic-reorder can be used to enable it. Dynamic variable
reordering also uses the strategy specified by the option -r <name>.

It is important to note that there are several trivial algorithms that satisfy
the mutual exclusion property. For instance, an algorithm that all jobs do not
perform any transition. Therefore, it is important to prove liveness properties.
For instance, we can try to prove that every process reaches the critical section
infinitely often. The following LTL formula states this property:

liveness_bug: THEOREM

system |- (FORALL (i : Job_Idx): G(F(pc[i] = critical)));

Chapter 4. The Bakery Protocol 24

Before proving a liveness property, we must check if the transition relation is
total, that is, if every state has at least one successor. The model checkers may
produce unsound results when the transition relation is not total. The totality
property can be verified using the sal-deadlock-checker.

% sal-deadlock-checker -v 3 --module="(@ system (bakery () (5 15)))"

...

ok (module does NOT contain deadlock states).

Now, we use sal-smc to check the property liveness_bug.

% sal-smc -v 3 --assertion="(@ liveness_bug (bakery () (5 15)))"

...

Counterexample:

Step 0:

...

========================

Begin of Cycle

========================

...

Unfortunately, this property is not true. A counterexample for a LTL live-
ness property is always composed of a prefix, and a cycle. For instance, the
counterexample for the property liveness_bug describes a cycle where at least
one of the jobs do not perform a transition. A simpler counterexample can be
produced if we try to verify an instance of the protocol with only two jobs.

% sal-smc -v 3 --assertion="(@ liveness_bug (bakery () (2 3)))"

...

Counterexample:

...

It is also possible to use sal-bmc to produce the shortest counterexample.

% sal-bmc -v 3

--iterative

--assertion="(@ liveness_bug (bakery () (5 15)))"

...

Counterexample:

...

In this example, sal-bmc finds the counterexample in less time. Actually,
sal-bmc is usually more efficient for counterexample detection.

Since liveness_bug is not a valid property, we can try to prove the weaker
liveness property:

liveness: THEOREM

system |- (FORALL (i : Job_Idx):

G(pc[i] = trying => F(pc[i] = critical)));

Chapter 4. The Bakery Protocol 25

This property states that every job trying to enter the critical section will
eventually succeed. The following command can be used to prove the property:

% sal-smc -v 3 --assertion="(@ liveness (bakery () (5 15)))"

...

proved.

Chapter 5

Synchronous Bus Arbiter

The synchronous bus arbiter is a classical example in symbolic model checking.
The example described here was extracted from McMillan’s doctoral thesis.
The SAL and LSAL files for this example are located in the following sub-
directories in the SALenv distribution package: examples/arbiter-sal and
examples/arbiter respectively. The purpose of the arbiter is to grant access
on each clock cycle to a single client among a number of clients contending for
the use of a bus (or another resource). The inputs of the circuit are a set of
request signals, and the output a set of acknowledge signals. Normally, the ar-
biter asserts the acknowledge signal to the client with lowest signal. However, as
signals become more frequent, the arbiter is designed to fall back on round robin
scheme, so that every requester is eventually granted access. This is done by
circulating a token in a ring of arbiter cells, with one cell per client. The token
moves once every clock cycle. If a given client’s request persists for the time it
takes for the token to make a complete circuit, that client is granted immediate
access to the bus. Figure 12 contains the header of the context arbiter, and the
type declarations. The context arbiter has a parameter n which is the number
of clients. The type of n is a subtype of NATURAL, since n must be greater than
1.

12arbiter{; n : {x : NATURAL | x > 1}}: CONTEXT =

BEGIN

Range: TYPE = [1..n];

Array: TYPE = ARRAY Range OF BOOLEAN;

...

END

Figure 13 contains the specification of a basic cell of the arbiter. Each cell
has a request input (req) and acknowledgement output (ack). The grant output
(grant_out) of cell i is passed to cell i+1, and indicates that no clients of index
less than or equal to i are requesting. Each cell has a local variable t which

26

Chapter 5. Synchronous Bus Arbiter 27

stores a true value when the cell has the token. The t local variables form a
circular shift register which shifts up one place each clock cycle. Each cell also
has a local variable w (waiting) which is set to true when the req is true and
the token is present. The value of w remains true while the request persists,
until the token returns. At this time, the cell’s override (override_out) and
acknowledgement (ack) outputs are set to true. The override signals propagates
to the cells below, negating the grant input of cell 1, and thus preventing any
other cells from acknowledging at the same time.

13cell [initial_t : BOOLEAN]: MODULE =

BEGIN

INPUT req : BOOLEAN

INPUT token_in : BOOLEAN

INPUT override_in : BOOLEAN

INPUT grant_in : BOOLEAN

OUTPUT ack : BOOLEAN

OUTPUT token_out : BOOLEAN

OUTPUT override_out : BOOLEAN

OUTPUT grant_out : BOOLEAN

LOCAL t : BOOLEAN

LOCAL w : BOOLEAN

LOCAL aux : BOOLEAN

DEFINITION

token_out = t;

aux = w AND t;

override_out = override_in OR aux;

grant_out = grant_in AND NOT(req);

ack = req AND (aux OR grant_in)

INITIALIZATION

w = FALSE;

t = initial_t

TRANSITION

t’ = token_in;

w’ = req AND (w OR t)

END;

Figure 14 describes the composition of n instances of the module cell. The
auxiliary module aux_module is used to provide a constant false value for the
input variable override_in of the first cell. It is also used to “connect” the
negation of the output override_out to the input grant_in in the last cell.
The outputs and inputs of each cells are mapped to arrays using the construct
RENAME. The auxiliary arrays are declared using the WITH construct. The con-
struct || is the synchronous composition operator. So, the full arbiter is the syn-
chronous composition of the auxiliary module, a cell, and the multisynchronous
composition of n-1 cells, since the type of idx is the subrange [2..n].

Chapter 5. Synchronous Bus Arbiter 28

14aux_module : MODULE =

BEGIN

OUTPUT zero_const : BOOLEAN

INPUT aux : BOOLEAN

OUTPUT inv_aux : BOOLEAN

DEFINITION

zero_const = FALSE;

inv_aux = NOT(aux)

END;

arbiter: MODULE =

WITH OUTPUT Ack : Array;

INPUT Req : Array;

OUTPUT Token : Array;

OUTPUT Grant : Array;

OUTPUT Override : Array

(RENAME aux TO Override[n], inv_aux TO Grant[n]

IN aux_module)

||

(WITH INPUT zero_const : BOOLEAN

(RENAME ack TO Ack[1],

req TO Req[1],

token_in TO Token[1],

token_out TO Token[n],

override_in TO zero_const,

override_out TO Override[1],

grant_in TO Grant[1]

IN (LOCAL grant_out

IN cell[TRUE])))

||

(|| (idx : [2..n]):

(RENAME ack TO Ack[idx],

req TO Req[idx],

token_in TO Token[idx],

token_out TO Token[idx - 1],

override_in TO Override[idx - 1],

override_out TO Override[idx],

grant_in TO Grant[idx],

grant_out TO Grant[idx - 1]

IN cell[FALSE]));

The SAL and LSAL versions of the context arbiter are available in the
SALenv distribution package in the examples directory.

5.1 Model Checking

The desired properties of the arbiter circuit are:

• No two acknowledge outputs are true simultaneously.

Chapter 5. Synchronous Bus Arbiter 29

at_most_one_ack:

THEOREM arbiter |- G((FORALL (i : [1..n - 1]):

(FORALL (j : [i + 1..n]):

NOT(Ack[i] AND Ack[j]))));

• Every persistent request is eventually acknowledged.

every_request_is_eventually_acknowledged:

THEOREM arbiter |- (FORALL (i : [1..n]):

G(F(Req[i] => Ack[i])));

• Acknowledge is not true without a request.

no_ack_without_request:

THEOREM arbiter |- G((FORALL (i : [1..n]): Ack[i] => Req[i]));

The following commands can be used to prove the properties for an arbiter
with 30 cells:

% sal-smc -v 3 --assertion="(@ at_most_one_ack (arbiter () (30)))"

...

proved.

% sal-smc -v 3 --assertion="(@ every_request_is_eventually_acknowledged

(arbiter () (30)))"

...

proved.

% sal-smc -v 3 --assertion="(@ no_ack_without_request

(arbiter () (30)))"

...

proved.

The property no_ack_without_request can be proved using the k-induction
rule in sal-bmc. This induction rule generalizes BMC in that it requires demon-
strating the safety property p holds in the first k states of any execution, and
that if p holds in every state of executions of length k, then every successor state
also satisfies this invariant.

% sal-bmc -v 3 -i

--assertion="(@ no_ack_without_request (arbiter () (30)))"

...

proved.

Although at_most_one_ack is a safety property, it is not feasible to
prove it using induction, unless users provide auxiliary lemmas. The option
--display-induction-ce can be used to force sal-bmc to display a counterex-
ample for the inductive step.

Chapter 5. Synchronous Bus Arbiter 30

% sal-bmc -v 3 -i -d 2 --display-induction-ce

--assertion="(@ at_most_one_ack (arbiter () (3)))"

...

k-induction rule failed, please try to increase the depth.

Counterexample:

Step 0:

...

Inspecting the counterexample, you can notice that more than one cell has
the token. So, we may use the following auxiliary lemma to prove the property
at_most_one_ack.

at_most_one_token:

THEOREM arbiter |- G((FORALL (i : [1..n - 1]):

(FORALL (j : [i + 1..n]):

NOT(Token[i] AND Token[j]))));

The following command instructs sal-bmc to use at_most_one_token as an
auxiliary lemma.

% sal-bmc -v 3 -i -d 1 --lemma=at_most_one_token

--assertion="(@ at_most_one_ack (arbiter () (30)))"

...

proved.

It is important to observer that the previous proof is only valid if the prop-
erty at_most_one_token is valid. The following command proves the auxiliary
lemma at_most_one_token using 1-induction.

% sal-bmc -v 3 -i -d 1

--assertion="(@ at_most_one_token (arbiter () (30)))"

...

proved.

	Introduction
	The SAL environment
	The SAL language
	Examples
	SALPATH

	A Simple Example
	Simulator
	Path Finder
	Model Checking

	The Peterson Protocol
	Path Finder
	Model Checking

	The Bakery Protocol
	Path Finder
	Model Checking

	Synchronous Bus Arbiter
	Model Checking

