
Draft, submitted for publication; please do not distribute without authors’ permission

Model Checking a Fault-Tolerant Startup Algorithm:

From Design Exploration To Exhaustive Fault Simulation
�

Wilfried Steiner
Real-Time Systems Group,

Technische Universität Wien, Austria
steiner@vmars.tuwien.ac.at

John Rushby
Computer Science Laboratory,

SRI International, USA
rushby@csl.sri.com

Maria Sorea, Holger Pfeifer
Abteilung Künstliche Intelligenz,

Universiät Ulm, Germany
sorea|pfeifer@informatik.uni-ulm.de

Abstract

The increasing performance of modern model-checking tools offers high potential for the computer-
aided design of fault-tolerant algorithms. Instead of relying on human imagination to generate taxing
failure scenarios to probe a fault-tolerant algorithm during development, we define the fault behavior of a
faulty process at its interfaces to the remaining system and use model checking automatically to examine
all possible failure scenarios. We call this approach “exhaustive fault simulation”. In this paper we
illustrate exhaustive fault simulation using a new startup algorithm for the Time-Triggered Architecture
(TTA) and show that this approach is fast enough to be deployed in the design loop. We use the SAL
toolset from SRI for our experiments and describe an approach to modeling and analyzing fault-tolerant
algorithms that exploits the capabilties of tools such as this.

1 Introduction

Design of fault-tolerant distributed real-time algorithms is notoriously difficult and error-prone: the com-

binations of fault arrivals, interleaving of concurrent events, and variations in real-time durations lead to a

case explosion that taxes the intellectual capacity of human designers. These difficulties are compounded
when optimizing numerical parameters—e.g., seeking to determine a minimum safe timeout, or the least

time required to stabilize after an upset.

In an idealized world, algorithms are derived by a systematic process guided by formal correctness

arguments but, in contemporary reality, designers generally have an informal argument in mind and develop

the final algorithm and its parameters by mentally exploring local variations against that argument and

against scenarios that highlight tricky cases. Exploration against scenarios can be partially automated using a�
This work was supported by the European project NEXT TTA (project IST-2001-32111) and by NASA Contract NAS1-00079

and Cooperative Agreement NCC-1-377 with Honeywell Incorporated.

1

simulator or rapid prototype and such automation may increase the number of scenarios that can be examined
and the reliability of the examination.

Automated examination of scenarios can be taken still further using model checking. In model checking,

the case explosion problem is transformed into one of state explosion—meaning that the time and space

required to run the model checker grows rapidly and eventually becomes infeasible as the size of the model

grows, so that abstraction, or consideration of only limited numbers of fault cases and real-time delays, must

be employed.

When using model checking in the design loop, the challenge is to cover a usefully large number of sce-

narios in a very short time (say a few minutes), so that the designers can perform an interactive exploration

of the design space without losing concentration or patience. As a design becomes consolidated, attention

shifts from exploration to verification and the challenge for model checking becomes one of covering a truly

exhaustive set of scenarios for a realistically accurate model in reasonable time (say, overnight).

Whether model checking is performed for exploration or verification, a matter of concern is the ease or

otherwise of encoding the algorithm, its fault model, and assumed environment in the language of the model

checker: most of these languages were originally developed for specifying hardware circuits or programs

and are less than ideal for describing fault tolerant algorithms and their fault models at appropriate levels of

abstraction.

In this paper, we describe an approach that provides a “dial” so that a single model can be used in model

checking for both rapid exploration and exhaustive verification, and we illustrate how the model can be used

both to check correctness and to help estimate worst-case performance parameters. We also demonstrate

how the latest generation of model-checking tools (we use SAL from SRI) meets the challenges of providing

both a convenient modeling language and the performance to examine trillions of states in a few hours. We

illustrate our approach using a new startup algorithm for the Time-Triggered Architecture (TTA).

This paper is structured as follows. In Section 2, we present an overview of the Time-Triggered Ar-

chitecture and discuss its startup in an informal manner. In Section 3, we discuss generic modeling issues
and introduce a formal model of the startup algorithm in the SAL language. The desired correctness prop-

erties are specified in Section 4 and Section 5 presents and discusses the results of our model-checking

experiments. Finally, we conclude in Section 6.

2 The Time-Triggered Architecture

The Time-Triggered Architecture (TTA) supplies a foundation for fault-tolerant safety-critical applications,

such as control functions in cars and aircraft. It provides an ultra-reliable logical bus connecting the “host”

computers that implement the chosen application, and a set of services that make it relatively simple to

organize the application in a fault-tolerant manner. Each host computer attaches to the system through a TTA

controller; the combination of a host and its controller is called a node. Nodes communicate over replicated

shared media, called channels. While initially the channels were physical buses, current realizations favor a

“star” topology with a central guardian at the hub of each star. The central guardians provide more robust

defense against error propagation than the previous approach that located simpler guardians at each node [7].

2

The node controllers and the central guardians collectively implement the Time-Triggered Protocol TTP/C
that guarantees correct operation of the system despite faults in some of the hosts, controllers, or central

guardians.

2.1 Synchronization and Startup

A TTA system or “cluster” with
�

nodes is depicted on the left of Figure 1. During steady-state operation,

the nodes execute a time-division multiple-access (TMDA) strategy to access the medium; that is, the access

pattern (called the TDMA schedule) is defined a priori, as depicted on the right of Figure 1.

A.4

A.1

A.3

A.2

… Node … Guardian

Cluster

Time

Cluster Communication

TDMA round n

A.1 A.2 A.3 A.4 A.1 A.2 A.4

Figure 1: TTA cluster and TDMA schedule

Each TTA node has a mapping from its local time to the slots in the cyclic TDMA schedule; in particular,

each node � knows the local time at which the slot for node � begins—we can denote this time by ���	�
��� .
Operation of TTA depends on synchronization of the local clocks, which simply means that for any two

nonfaulty nodes � and
 , the instants when � ’s local clock reads � � �
��� and when
 ’s clock reads �����
��� must

occur very close together in real time.

The synchronization problem is to adjust the values of � � (or, equivalently, the local clocks) so that nodes

remain synchronized despite the drift of their hardware clocks (due to their oscillators operating at slightly

different rates). The synchronization problem is well understood and many algorithms to solve it have been

developed, analyzed, and formally verified, including the algorithm employed in TTA [9].

The startup problem is to establish values for the functions � � (or, equivalently, for the local clocks)

as the nodes first power up so that they quickly become synchronized; the restart problem is to reestablish

synchronization after transient faults have afflicted the values of ��� or the local clocks at one or more (or all)
nodes. In this paper, we are concerned with algorithms for the startup and restart problems.

2.2 Fault Hypothesis

Since TTA systems are designed for safety-critical applications, a sufficient degree of fault tolerance must be

provided. The fault hypothesis (i.e., the number, arrival rate, and kind of faults to be tolerated) of the basic

bus-based TTP/C protocol is discussed in [2]. Fault injection studies [1] showed that additional mechanisms,

such as the central guardians of the star topology [3], are necessary to achieve the demanding requirements

for fault tolerance in the aerospace and automotive industries.

3

With respect to the protocol execution, each central guardian has full knowledge of the parameters of its
attached nodes, and can therefore judge whether a message (which is sometimes called a “frame” in TTA)

sent by a node is valid or not (i.e., is sent within its assigned slot and satisfies certain consistency checks).

Guardians relay valid messages to all the other nodes on their channel, so that from the nodes’ point of view,

the channel looks like a broadcast bus. A basic TTA system uses two channels, whose central guardians are

connected by a pair of interlinks that allow each guardian to receive data broadcast on the other channel.

The interlinks are needed in the algorithm developed here to avoid scenarios in which one clique of nodes is

synchronized to one guardian and another set to the other, with each clique unaware of the existence of the

other. Each interlink is unidirectional: that is, the central guardian of channel � receives data from channel�� on one interlink but cannot transmit on this interlink, and vice versa.

The implementation of a central guardian makes it physically impossible for it to create a correct frame

by itself (it lacks the hardware to construct the CRC that is part of a valid frame), or to store a previously

sent frame and delay it for an arbitrarily long duration. Thus, if a central guardian receives a correct frame

over the interlink connection from the other channel it can be assured that the frame was sent by a correct

sender and the data can be used for further protocol execution.

Using central guardians, TTA is claimed to tolerate one faulty component (the “single failure hypothe-

sis”); this can be either a faulty node, which is allowed to send arbitrary signals for arbitrary durations with

arbitrary frequency, or a faulty channel (including its guardian), which is allowed to show the same behavior

as a faulty node with the restriction that it cannot create correct frames, nor delay frames for an arbitrary

duration.

2.3 Fault-Tolerant Startup

A basic solution to the startup problem is for nodes that see no traffic for some time to send a “wakeup”

message that carries their own identity. This message provides a common event that all nodes can use as a

baseline for their local clocks, and the identity of the sender indicates the position in the TDMA schedule to

which this time corresponds.

Of course, two nodes may decide to send wakeup messages at approximately the same time, and these

messages will “collide” on the channel. In a bus-based TTA, the signals from colliding messages physically

overlay on the medium, but propagation delays cause different nodes to see the signals at different times so

that collision detection can be unreliable. In a star topology, the central guardians arbitrate collisions and

select just one message from any that arrive at approximately the same time to forward to the other nodes.

However, each central guardian arbitrates independently, so nodes can receive different messages on the

two channels at approximately the same time; resolving these “logical collisions” is a responsibility of the

startup algorithm.

In addition to collisions, the startup algorithm must deal with faulty nodes that may send “wakeup” mes-

sages at inappropriate times, masquerade as other nodes, and generally fail to follow the algorithm. Many of

these faults can be detected and masked only with sophisticated guardians; the central guardians of the star

topology are a cost-effective way to provide this protection. However, this additional fault tolerance exacts

a price: the central guardians must synchronize with the nodes during startup. Because the communication

4

system is replicated and there are two central guardians, it is particularly crucial that a faulty node must not
be able to initiate or infiltrate a startup sequence to cause the central guardians to start at different positions

in the TDMA schedule. And, of course, one of the guardians could itself be faulty.

Fault-tolerant startup of a TTA system clearly requires rather intricate algorithms in the nodes and

guardians. A suitable “node only” startup algorithm for the bus topology is implemented in TTP/C [12].

A startup algorithm for central guardians was designed as part of the star topology developed in the NEXT

TTA project. Model checking assisted in the design loop of this algorithm and led to a more resource-

efficient solution: whereas the initial guardian startup algorithm required � timer per node, the final version

uses only a single timer. Model checking also was used in assurance of the overall algorithm and confirmed

the need to modify the algorithm used in the nodes to overcome certain partitioning scenarios (see Sec-

tion 5.2). The finished algorithms are outlined below and the model-checking activity that assisted in their

development and assurance is the focus of the rest of the paper.

2.3.1 Node Startup

The state-machine of the startup algorithm executed in the nodes is depicted in Figure 2(a). It consists of�
states: INIT, LISTEN, COLDSTART, and ACTIVE. Each node � has two unique timeout parameters,��� ������� �� and �"!�#$� %$����&$'
�� that are defined in the following recursive way (based on the unique value � ���(&)'
�+*	,�).

Startup Delay: �.-0/21435/�647� is unique to each node. It is given by the duration of all TDMA slots from the

beginning of the TDMA round up to the beginning of the slot for node � (whose duration is � -98�:	/�):

� -0/2143	/�6;7� <
=?> � < >

@ ��;ACB � -98�:	/�EDFB �HG >
Listen Timeout: � 8 � - /2I J� is given by the sum of the node’s startup delay � - /21)35/�647� and K TDMA rounds (each

of duration � 3$:96LJNM): � 8 � - /2I J� < KPO � 3$:	6EJQMSR � -0/21435/�647� .

Cold-Start Timeout: �UT :58�M;-0/2143	/� is given by the sum of the node’s startup delay � - /21)35/�647� and � TDMA

round: � T :58VM4-0/21435/� < � 3$:96LJNM R � - /21)35/�647� .

When a node is powered-on it either has to integrate to an already synchronous set, or it must initiate or

wait for a cold-start to be executed. Each newly started (or restarted) node � , after performing some internal

initialization in the INIT state, transits to LISTEN (Transition �QW2�) and listens for the unique duration��� ������� �� to determine whether there is a synchronous set of nodes communicating on the medium. During

synchronous operation i-frames (this is the name of a kind of message, it has nothing to do with node �)
are transmitted periodically that carry the current protocol state, including position in the TDMA round. If

the node receives such an i-frame, it adjusts its state to the frame contents and is thus synchronized to the

synchronous set (Transition K�W�K); if not, the cold-start mechanism is executed. Cold-start is done in two

phases. During the first phase (while in the LISTEN state), each node listens for a “cold-start” message

(cs-frame) from another node indicating the beginning of the cold-start sequence; cs-frames are similar to

5

INIT

(1)

LISTEN

(2)

COLD

START

(3)

ACTIVE

(4)

1.1 2.1

2.2

3.1

3.2

(a) Node Startup

INIT

(1)

LISTEN

(2)

1.1

2.1 STARTUP

(3)

Tentative

ROUND

(5)

ACTIVE

(7)

Protected

STARTUP

(6)

2.2

3.2

Silence

ROUND

(4)

3.1

4.1

5.1

5.2

6.1

6.26.3

2.3

(b) Guardian Startup

Figure 2: State-machine of the TTA startup algorithm

i-frames but carry a protocol state suggested by the sending node. When a node completes reception of a

cs-frame, it enters the second phase COLDSTART (Transition K�W2�) and resets its local clock to X !9� (that

is the transmission duration of the cs-frame). Thus, all nodes that received the cs-frame have synchronized

local clocks (within system tolerances, including propagation delay). Each node that receives neither an

i-frame nor a cs-frame during the LISTEN phase will enter COLDSTART (Transition K�W2�), resets its local

clock to
>

and sends out a cs-frame by itself. Thus, after the transmission of the cs-frame (X ! � later), the

local clock of the sending node will also be synchronized to the local clocks of the set of receiving nodes.

This algorithmic choice, not to directly synchronize the receiving nodes on the contents of the first cs-frame

while in the LISTEN state, is called the big-bang mechanism. There is, of course, the possibility that two

nodes Y and Z send out simultaneous or overlapping cs-frames. The receiving nodes will see this as a logical

collision but take the same actions as if a single cs-frame was received. Each node Y in COLDSTART state

waits for reception of another cs-frame or i-frame until its local clock reaches the value of its individual cold-

start timeout � !�#$� %)�[��&$'
�7 . If it receives such a frame it synchronizes on its contents and enters the ACTIVE
state (Transition \�W�K); if not, it resets its local clock and again broadcasts a cs-frame (Transition \�W2�). No

further collision can occur at this point, for the following reasons.

1. Based on the strict order of the unique cold-start timeouts � !�#$� %$���(&)'
�� no two nodes that caused a colli-

sion can collide again.

2. Since � � �������9�� G � !�#$� %)�[��&$'
�� , for every two nodes �4]
 , no newly awoken node � may cause a collision.

The big-bang mechanism ensures better precision, since the synchronization quality in the second phase

is independent of the propagation delay: a receiving node knows the identity of the unique sender of the
cs-frame and can compensate for its known propagation delay. More importantly, the big-bang mechanism

is necessary to mask certain faults—see Section 5.2.

6

2.3.2 Guardian Startup

A faulty node could masquerade as another during startup, send cs-frames at inappropriate times (or contin-

uously), and generally fail to follow the algorithm. A central guardian can mask these faults, but to do so

(and to perform its prime function of enforcing the TDMA schedule during steady-state operation), it must

itself synchronize with its nodes. The startup algorithm of the guardians is depicted in the state-machine in

Figure 2(b).

A central guardian starts in INIT state where all communication on its channel is blocked. When

its initialization is finished it transits to LISTEN state (1.1) and listens to the interlink for K^O � '_#$*`�E% ,

that is, it tries to integrate to an already running system. If an i-frame is received, the central guardian

transits to ACTIVE state (2.3); if a cs-frame is received, it transits to Tentative ROUND state (2.2). If
an integration was not possible during LISTEN, the central guardian transits to STARTUP state (2.1).

All ports are now opened and the central guardian waits until it receives a valid frame either on one of

its ports or on the interlink. If more than one port becomes active at the same time, the central guardian

selects one port non-deterministically. If a cs-frame is received and no logical collision occurred (that is

the guardian received either two identical cs-frames or only one frame), the central guardian transits to

Tentative ROUND state (3.1). If a collision occurred the central guardian transits to SILENCE state (3.2).

In Tentative ROUND state the central guardian operates the remaining TDMA round (the received frame

during STARTUP state is considered the first frame of a TDMA round); if during this round a valid i-frame

is received, the startup initiated by the cs-frame sender is confirmed and the central guardian proceeds to

ACTIVE state (5.2). If during this TDMA round no valid i-frame was received the central guardian transits

to Protected STARTUP (5.1). If a central guardian transits to SILENCE state (because a collision was

received) it blocks all communication for the remaining round and transits to Protected STARTUP as well

(4.1). Protected STARTUP state differs from STARTUP state in that here the ports are enabled for one

TDMA round according to the cold-start timeouts of the nodes. Thus, in contrast to STARTUP state every

node is forced to stay to its timeout pattern. The transitions from Protected STARTUP state to Tentative
ROUND state (6.1) and SILENCE state (6.2) underly the same rules as in STARTUP state. If no transition

is done for a period of one TDMA round the central guardian transits back to STARTUP state (6.3) and

the startup sequence is repeated. Since the central guardian has full knowledge of the attached nodes, it

can detect faulty transmissions. If a central guardian detects a faulty node it will block all further attempts

of this node to access the communication channel during the startup sequence. Thus, a faulty node cannot

influence the startup sequence forever.

3 Verification Model

The startup algorithm described in the previous section is fairly subtle and must cope with many kinds of

fault and timing behaviors. Model checking provides a way to explore these behaviors in an automatic

way, but faces certain difficulties. First, the algorithm involves time in an essential way and the most

realistic formal model for the algorithm will be one in which time is treated as a continuous variable. Timed

automata provide a suitable formalism of this kind, and are mechanized in model checkers such as Kronos

7

and UPPAAL . Lönn [8] considers startup algorithms for TDMA systems similar to TTA and verifies one
of them using UPPAAL. However, model checking for timed automata is computationally complex, so that

when we add the case/state explosion caused by considering a large number of fault scenarios, the model

rapidly becomes computationally infeasible. Our initial experiments did use timed automata and we were

unable to consider more than a very few simple kinds of faults.

It is essential to the utility of model checking for exploration and verification of fault-tolerant algorithms

that we are able to consider a large number of different kinds of faults—ideally, we would like the fault

model to be exhaustive, meaning that we describe every kind of fault within the fault hypothesis, and let the

model checker inject these in all possible ways. Since this is impracticable in a model that uses continuous

time, we looked for an abstraction employing discrete time.

Nodes executing the startup algorithm measure time by counting off slots in the TDMA schedule. Al-

though slots have duration and may be offset at different nodes, we can think of them as indivisible units:

we do not care by how much the slots at different nodes are offset, just whether they overlap at all (so that a

collision can occur). Thus, we can use a discrete notion of time and can model the collective behavior of a

cluster of nodes as the synchronous composition of discrete systems. Another way to justify this modeling

approach is to think of it as describing the system from the point of view of a central guardian: each discrete

instant corresponds to some real time interval at the guardian and all messages that (start to) arrive in that

interval are regarded as simultaneous; the behavior of the nodes is driven off (i.e., synchronously composed

with) the discretization provided by the central guardian.

We explored this approach in an analysis of the original startup algorithm from [12] and found it to

work very well. We used the SAL (Symbolic Analysis Laboratory) language and tools from SRI (see

sal.csl.sri.com); SAL complements the widely-used PVS verification system by providing more

automated forms of analysis for systems that can be specified as transition relations (see [5] for a description

of SAL and a discussion of its relation to other SRI tools). Unlike most other model-checking languages,

SAL supports a relatively abstract specification language that includes many of the high-level types and
constructs found in PVS, and this allowed the algorithm and its properties to be specified in a convenient

and succinct manner.

However, this experiment, which used the explicit-state model checker of SAL, exposed a second diffi-

culty: comprehensive—let alone exhaustive—fault modeling provokes a state explosion problem even in a

discrete-time model. Although only a single channel and just a few kinds of faults were considered, model

checking required 30 seconds for a 4-node cluster, and over 13 minutes for a five-node cluster. A more

efficient explicit-state model checker such as Spin could possibly have improved these figures, but even

the largest of the models considered in these preliminary experiments has only 41,322 reachable states,

whereas exhaustive fault modeling for the new algorithm with two channels could generate many billions of

reachable states, which far exceeds the reach of any explicit-state model checker.

In the months since those initial experiments were performed, the SAL 2.0 toolset has become available,

and this provides several state of the art model checkers, including symbolic (using BDDs), bounded (using

a SAT solver), and infinite-bounded (using decision procedures). The SAL symbolic model checker is able

to verify the 4- and 5-node examples mentioned above in 0.38 and 0.62 seconds, respectively, on the same

8

machine used for the explicit-state experiments. These two or three orders of magnitude improvement in
performance encouraged us to try using model checking during development of the new startup algorithm.

However, fully exhaustive fault models still posed a challenging prospect, so we developed a modeling

“dial” that could inject varying degrees of faults: our idea was to use as high a degree (i.e., as many kinds) of

faults as proved feasible in practice. In the remainder of this section we first present our basic model of the

startup algorithm and then describe the modeling concepts for faulty components of varying degrees. Due

to space limitations we only give representative parts of the model and refer the interested reader to [11]

where the complete source code of the SAL model can be found, together with instructions that will help to

recreate the experiments.

3.1 Basic Model

The system model comprises a nodes, each synchronously composed with two central hubs that each con-

tain a central guardian that blocks certain faulty messages. At each time step, each node examines the input

messages received from the hubs, consults its private state variables, and possibly generates an output mes-

sage that it sends to the hubs. Each hub examines the messages received from the nodes and the other hub

and constructs the single message that will comprise the consistent input presented to the nodes at the next

time step.
We specify this discrete, synchronous model in the language of SAL as follows. We begin by defining

the types over which the state variables will range.

startup: CONTEXT =

BEGIN

n: NATURAL = 4;

index: TYPE = [0..n-1];

maxchannels: NATURAL = 2;

channels: TYPE = [0..maxchannels-1];

maxcount: NATURAL = 20*n;

counts: TYPE = [0..maxcount];

Here, n is the number of nodes (here assigned the value 4, but we also examine models with 3, 5, and 6

nodes), which are identified by elements of the type index. Analogously, maxchannels is the number

of channels, which are identified by elements of the type channels. The largest timeout considered is

maxcount and the values of a timeout counter are given by the type counts.

states: TYPE = b init, listen, start, active, faulty, faulty_lock0, faulty_lock1, faulty_lock01 c ;
hub_states: TYPE = b hub_init, hub_listen, hub_startup, hub_tentative, hub_silence,

hub_protected, hub_active c ;
msgs: TYPE = b quiet,noise,cs_frame,i_frame c ;

The enumerated types states, hub states, and msgs specify, respectively, the states of the al-

gorithm at a node, the states of the algorithm at a hub, and the kind of messages that can be exchanged

with a hub. The states correspond to those in the state-machines of Section 2, plus additional faulty

states that are used in the simulation of faulty components. Each node may output messages with values

quiet (meaning no message), noise (meaning a syntactically invalid signal), cs frame (a cs-frame), or

i frame (an i-frame); the hub will return a message type based on the inputs of the attached nodes.

9

LT_TO:ARRAY index OF NATURAL = [[j:index] 2*n+j];

CS_TO:ARRAY index OF NATURAL = [[j:index] n+j];

The unique timeouts for each node are specified as LT TO (listen timeout) and CS TO (cold-start timeout),

as defined in Section 2.

3.1.1 Node Model

We specify the input and output variables of an individual node as follows.

node[id:index]: MODULE = BEGIN INPUT

msg_in: ARRAY channels OF msgs,

time_in: ARRAY channels OF index,

lock_in: ARRAY channels OF BOOLEAN

OUTPUT

msg_out: ARRAY channels OF msgs,

time_out: ARRAY channels OF index,

state: states,

counter: counts,

errorflag: BOOLEAN

The msg in represents the kind of message that the node receives from the hubs; if it is a normal

message, then time in indicates the slot position transmitted in the sender’s frame, which equals the

current time measured relative to the start of the TDMA round if the sender sends a correct value. We can

think of this information as being included in the message, but it is easier to model it as a separate variable.

The input variable lock in is used to make the model more compact and is discussed in Section 3.2.

The output variables msg out, time out, state, and counter represent, respectively, the message
that this node will output to the hub, its estimate of the identity of the node associated with the current slot

(i.e., its estimate of time relative to the start of the TDMA round), its state within the algorithm, and the

value of its timeout counter. The output variable errorflag is used for diagnosis of the model and has no

influence on the protocol execution.

LOCAL

startupdelay: counts,

big_bang: BOOLEAN

Each node has a local variable startupdelay that indicates the maximum duration a node is allowed

to stay in init state (simulating the different power-on times of the different nodes). The local variable

big bang is set to TRUE if no big-bang was received yet, and to FALSE otherwise.

The algorithm is specified by a series of guarded commands. We describe in detail those that apply to a

node in the init state, and one transition of a node in listen state, as representative illustrations.

[% Transition: 1.1

state = init

--> state’ = IF NOT faulty_node[id] THEN listen ELSE faulty ENDIF;

counter’ = 1;

msg_out’ = msg_out;

time_out’ = time_out;

10

[] % Let time advance

state = init AND counter < startupdelay

--> state’ = state;

counter’ = counter+1;

msg_out’ = msg_out;

time_out’ = time_out;

Here, the [character introduces a set of guarded commands, which are separated by the [] symbol;

the % character introduces a comment. A SAL guarded command is eligible for execution in the current

state if its guard (i.e., the part before the --> arrow) is true. The SAL model checker nondeterministically

selects one of the enabled commands for execution at each step; if no commands are eligible, the system is

deadlocked. Primed state variables refer to their values in the new state that results from execution of the

command, and unprimed to their old (pre-execution) values.

Provide the counter is less than startupdelay, both the above commands are eligible for execution;

thus, the node can nondeterministically choose to stay in the init state (incrementing its counter by 1)

or to transit to the listen state. If the counter reaches startupdelay, the node must transit either to

listen or faulty state, depending whether the node simulates a correct node or a faulty one. Hence,

the two guarded commands above allow the node to “wake up” and transit to the listen state at any point

during the specified period of startupdelay; on entering the listen (or faulty node) state, its

counter is reset to � .

We next describe a class of transitions for a node from listen to (cold) start state.

[] % Transition 2.1

([] (k: channels):

state = listen AND big_bang AND msg_in[k] = cs_frame

AND (NOT (EXISTS (j:channels): j/=k AND (msg_in[j] = cs_frame OR msg_in[j] = i_frame)

AND (time_in[k]/=time_in[j] OR msg_in[k]/=msg_in[j])))

--> state’ = start; counter’ = 2;

msg_out’=[[j:channels] quiet];

time_out’=[[j:channels] 0];

big_bang’ = FALSE;)

This guarded command is a short hand for a set of transitions. It represents one transition for each k,

with � < >]E� . The precondition is satisfied, if the node is in listen state, a big bang was not received

yet by this node, the incoming message on channel k is a cs-frame, and there does not exist a channel

different from k (in a dual-channel system, there is only one other channel) where a cs-frame or i-frame is

received that has another time in value than that on channel k. The output and local variables will be set
to the appropriate values. The subtly differentiated cases in the precondition were helpful in testing different

algorithm designs.

3.1.2 Hub Model

The input/output behavior of a hub is specified as follows.

11

hub[c:channels]:MODULE = BEGIN

INPUT

msg_in: ARRAY index OF msgs,

time_in: ARRAY index OF index,

interlink_msg_in: msgs,

interlink_time_in: index

A hub receives msg in and time in as input values from each node, and interlink msg in and

interlink time in from the other channel (a hub also listens to the other channel during startup).

OUTPUT

msg_out: ARRAY index OF msgs,

time_out: ARRAY index OF index,

interlink_msg_out: msgs,

interlink_time_out: index,

state: hub_states,

collisions: [0..10],

lock: ARRAY index OF BOOLEAN

A hub has the following outputs: msg out, the kind of message the hub sends to the nodes; time out,

this variable represents the slot position when a frame is relayed to the other hub; interlink msg out

and interlink time out are the kind of message and slot position a hub sends to the other channel

(in a correct hub, these values will be equal to msg out and time out). The internal state of a hub

is represented by state. We use the variable collisions to count the number of collisions during

startup (this variable has no influence on the protocol execution but is used in analysis). lock is an array

of boolean variables corresponding to “ports” (the connections from a hub to its nodes). Initially these are

set to FALSE; if a hub discovers, by its sending behavior, that a node is faulty, it will set the corresponding

boolean to TRUE and will disallow further transmissions from this node.

LOCAL

round_counter1: [0..n+1],

round_counter2: [0..n+1],

round_counter_delay: [0..10*n],

slot_position: index,

hub_error: BOOLEAN,

partitioning: ARRAY index OF BOOLEAN,

send_noise: ARRAY index OF BOOLEAN

A hub uses two round counter variables to count the slots per round, while

round counter delay is used to count the initial delay in hub init state (analogous to startup-

delay). During the tentative and the synchronized states, slot position is used to keep track of the

current slot position. The variable hub error is used to model certain errors, while partitioning and

send noise are used to simulate a faulty hub that selects only a subset to relay a message or broadcasts

noise.

We discuss representative transitions of the hub next.

[] ([] (i: index):

state = hub_startup AND msg_in’[i] /= quiet AND NOT lock[i]

-->

12

This guarded command again represents a set of transitions. The precondition is satisfied if the hub is
in hub startup state and some node i sends a message with a type other than quiet and the port of the

respective node is not locked.

msg_out’ = [[j:index]

IF msg_in’[i]=cs_frame AND time_in’[i]=i THEN cs_frame ELSE noise ENDIF];

time_out’ = [[j:index] time_in’[i]];

interlink_msg_out’= msg_out’[0];

interlink_time_out’ = time_out’[i];

state’ = IF (msg_out’[i] = cs_frame

AND ((interlink_msg_in’ = cs_frame AND interlink_time_in’ = time_in’[i])

OR (interlink_msg_in’ /= cs_frame)))

OR (msg_out’[i] /= cs_frame AND interlink_msg_in’ = cs_frame)

THEN hub_tentative

ELSIF msg_out’[i] = cs_frame AND interlink_msg_in’ = cs_frame

AND interlink_time_in’ /= time_in’[i]

THEN hub_silence

ELSE hub_startup ENDIF;

Here we present parts of the postcondition of this transition. The hub performs semantic analysis in

that it checks whether the type of msg in’ is a cs-frame with the correct time value. Depending on the

semantic analysis it relays either the frame or noise to the nodes and the other channel. The hub’s next state

is calculated by comparing the incoming message on its own channel and the incoming message of the other

channel, as depicted in second box of specification.

The node and hub modules are connected using a switchmodule, that simply connects input variables

of the nodes to the respective output variables of the hubs and vice versa. The hubs are interconnected in

the same way by an interlinkmodule.

3.2 Failure Modeling

Faults vastly increase the statespace that must be explored in model checking, and they do so in two different

ways. The first way is by introducing genuinely different behaviors; we provide a fault degree “dial” to

parameterize this as described in the following section. The second way is to introduce “clutter” in the form

of states that differ in irrelevant ways: for example, a faulty node can end up in one of many different states,

but once the correct components have excluded this node from further consideration, its state has no effect

on system behavior. However, a model checker distinguishes all the different states of the faulty component

and this needlessly complicates its task. An essential “trick” in modeling fault-tolerant algorithms is to set

the states of faulty components to fixed values once they can no longer affect the behavior of the system.

We implement this by a mechanism we call feedback, also described in the next section.

3.2.1 Node Failures

The model simulates time in discrete slot granularity and a faulty node is simulated as one that can send

arbitrary messages in each slot. We classify the possible outputs of such a faulty node into the six fault

degrees depicted by the �
dfegd�� matrix in Figure 3. For example, a fault degree of K allows a faulty node

13

q
u

ie
t

cs
_

fr
am

e

 (
g

o
o

d
)

i_
fr

am
e

 (
g

o
o

d
)

n
o

is
e

cs
_

fr
am

e

(b
ad

)

i_
fr

am
e

 (
b

ad
)

quiet 1 4

cs_frame (good) 2 4

i_frame (good) 3 4

noise 4 4

cs_frame (bad) 5 5

i_frame (bad) 6 6

5

6

6

6

6

6

6

6

5

5

5

5

5

6

3

3

3

4

5

6

2

2

3

4

chB

chA

Figure 3: Fault degree

to broadcast only cs-frames, with the correct semantics, on zero, one, or two channels, while fault degree d
allows a node to send an arbitrary combination of cs-frames and i-frames with correct or incorrect semantics,

noise, or nothing on each channel.

Each of this \hd combinations was explicitly described by guarded commands in the SAL model.

[] state = faulty AND degree >= 2

-->

msg_out’=[[j:channels] IF j = 0 THEN cs_frame ELSE quiet ENDIF];

time_out’ = [[j:channels] IF j = 0 THEN faulty_ID ELSE 0 ENDIF];

state’ = IF lock_in[0] AND lock_in[1] AND feedback THEN faulty_lock01

ELSIF lock_in[0] AND feedback THEN faulty_lock0

ELSIF lock_in[1] AND feedback THEN faulty_lock1

ELSE state ENDIF;

Here, one guarded command of a faulty node with fault degree K or greater is depicted: such a faulty node

is allowed to broadcast a cs-frame on channel
>

and does not send on the second channel. Furthermore,

to reduce the statespace, we use “feedback”: the lock in[i] input variables are set by the hub � (corre-

sponding to its lock output variables) if it discovers that the node is faulty (by judging on the node’s output

behavior). A faulty node will then transmit only quiet on channel � , since the hub will block all messages
of the faulty node anyway. To judge its effect, this feedback routine can be turned on and off by setting the

feedback parameter to TRUE or FALSE respectively.

3.2.2 Hub Failures

Analogous to a faulty node, a faulty hub is simulated by assigning its output variables to arbitrary values,

within its fault hypothesis (a faulty hub cannot create correct messages) in each slot.

[] ([] (i: index):

state=hub_faulty AND msg_in’[i] /= quiet

-->

msg_out’ = [[j:index] IF partitioning[j] THEN msg_in’[i]

ELSE IF send_noise[j] THEN noise ELSE quiet ENDIF ENDIF];

time_out’ =[[j:index] time_in’[i]];

interlink_msg_out’ = msg_in’[i];

interlink_time_out’ = time_in’[i];)

14

This example of a transition by a faulty hub is activated if an attached node sends a message other than
quiet to the hub. The faulty hub then is free to select a subset of nodes to which the message is forwarded.

The local variable partitioning, an array of boolean variables, creates such a partitioning of the nodes.

By specifying no initial value for this variable, the model checker is forced to test every assignment. The

faulty hub is allowed to send either noise or quiet to the other nodes, using the similarly uninitialized

boolean array send noise. We call this method implicit failure modeling (in the sense, that it is not

necessary to model transitions for each subset explicitly).

4 Correctness Properties

In the following we describe some correctness properties of the algorithms and their formulation as “lem-

mas” in SAL notation. Here, G denotes the always or i modality of linear temporal logic (LTL), and F

denotes the eventually or j modality.

Lemma 1 Safety: Whenever any two nodes are in the ACTIVE state, these nodes will agree on the slot

time.

safety: LEMMA system |- G(FORALL (i,j:index): (lstates[i] = active AND lstates[j] = active) =>

(node_time_out[i] = node_time_out[j]));

Lemma 2 Liveness: All correct nodes will eventually reach the ACTIVE state.

liveness: LEMMA system |- F((FORALL (i:index): lstates[i] = active OR faulty_node[i]));

Lemma 3 Timeliness: All correct nodes will reach the ACTIVE state within a bounded time.

timeliness: LEMMA system |- G(startup_time <= @par_startuptime);

Lemma 4 Safety 2: Whenever a node reaches the ACTIVE state, a correct hub has also reached either the

Tentative ROUND or ACTIVE states.

safety_2: LEMMA system |- G ((EXISTS (i:index): lstates[i] = active) =>

(hstates[1]=hub_active OR hstates[1]=hub_tentative));

Within our model-checking study additional lemmas were examined to gain confidence in our model.

Those lemmas can be found in the source code of the SAL model.

5 Experimental Results and Discussion

In this section we present results from our experiment using model checking in development of the new

startup algorithm for TTA. Our experiments were performed on an Intel(R) Xeon(TM) with a CPU speed ofK�W�k > GHz and K GByte memory. We used the Linux distribution of SAL 2.0.

15

5.1 Effectiveness of Statespace Reduction Measures

Our decision to use a discrete model for time was critical to our ability to perform these experiments at all.

Although we cannot yet prove the soundness of this abstraction, we gained confidence in it by selectively

removing mechanisms from the SAL model of the algorithm and observing that the model checker always

detected the expected system failures.

In exploring algorithmic variations, it was crucial for the model checker to deliver results within the

human attention span of a few minutes. Our principal “dials” for trading time required against thoroughness

of the exploration performed by the model checker were the number of nodes considered (typically from 3 to

6), and the fault degree. The parameter X`l &$�V� *`'_� selects the fault modes that a faulty node may exhibit. Figure

4 illustrates the verification times in seconds for three lemmas in a 4-node model with XLl &$�V� *`'_� < �Q]4\�]4m . The
results clearly show the increase in verification times with fault degree. A fault degree of 1 is suitable for

quick investigation in the inner design loop, while degrees 3 and 5 invite a coffee break.

X$l &$��� *;'n� safety liveness timeliness
1 44.11 196.05 77.14
3 166.34 892.15 615.03
5 251.12 1324.54 921.92

Figure 4: Effect of Increasing Fault Degree on Model-Checking Performance

The feedback mechanism (i.e., forcing failed components to a standard state to reduce the statespace)

was ineffective or counterproductive in practice for medium to large models, but for very large models it

proved essential. For example, one property was successfully model checked in a 6-node model in 30,352

seconds (about 8.5 hours) with feedback on, but had not terminated after 51 hours with it off. We intend to

investigate the feedback mechanism further, to better understand when and why it is effective.

5.2 Design Exploration: The Big-Bang Mechanism

One area where we performed expensive design exploration was to determine the necessity and effectiveness
of the big-bang mechanism. A crucial requirement of the startup algorithm is that it should not establish

synchronous operation of a subset of nodes on a faulty hub while the second, correct, channel is available

but unsynchronized. In such a case it would be possible for the faulty hub to forward messages only to

the synchronous subset but not to the other nodes and hub; other nodes that are not yet synchronized would

perform the startup algorithm (since the traffic of the synchronous set is hidden by the faulty hub) and startup

independently of the other, already synchronized, nodes thereby establishing a classical clique scenario [13],

in which two subsets of nodes are communicating within each subset but not as one coordinated whole. The

big-bang mechanism (Section 2) is used to prevent such scenarios.

Our model-checking experiments verified the necessity of the big-bang mechanism by producing the

following counterexample in its absence for a cluster of 4 nodes:

1. node apo and apq start up with one slot difference;

2. after the listen timeouts expire, aro and asq send their cs-frames, resulting in a collision;

16

3. the correct hub forwards the winning node, say ato , on its channel to all nodes and the second channel;

4. the faulty hub forward the winning node on its channel, a q , only to the correct hub;

5. nodes atB and aFu receive only one cs-frame (from aro) and synchronize on it, reaching ACTIVE state;

6. the correct hub sees a collision, since the faulty hub forwards the other cs-frame to it, and thus will

not synchronize to the active set of nodes.

The big-bang mechanism discards the first cs-frame a node receives, since this cs-frame could be part of a

collision of two nodes. The model-checking studies showed the necessity and correctness of this mechanism.

There is a class of scenarios similar to the one above that is not directly addressed by the algorithm: this

is where nodes start up on a single faulty guardian (believing the other guardian to be unavailable), and only

a subset of them achieve synchronous operation. These scenarios are excluded by arranging the power-on

sequence so that the guardians are running before the nodes: the algorithm is able to deal with a faulty
guardian provided the other guardian is available at the start of its operation.

SAL 2.0 provides both bounded and symbolic model checkers. Bounded model checkers, which are

based on propositional satisfiability (SAT) solvers, are specialized for detecting bugs: they explore models

only to a specified, bounded depth and can be faster than symbolic model checkers (which effectively explore

the entire statespace) when bugs are present that can be detected within the bound. Bounded model checking

provides algorithm developers with another analytical “dial”: they can explore to increasing depths with a

bounded model checker and switch to the “unbounded” depth of a symbolic model checker only when all the

“shallow” bugs have been detected and eliminated. In our big-bang experiments, the SAL bounded model

checker was sometimes more efficient than the symbolic one at exposing the failing scenarios. For example,

it found a violation to the Safety 2 property in a 5-node system at depth 13 in 93 seconds (solving a SAT

problem with 405,398 nodes), whereas the symbolic model checker required 127 seconds (for a model with

682 BDD variables).

5.3 Worst-Case Startup Scenarios

We define the worst-case startup time, �pv ! ��*	, , as the maximum duration between K or more non-faulty nodes
entering the LISTEN or COLDSTART states and � or more non-faulty nodes reaching the ACTIVE state.

We explored worst-case startup times by model checking the timelinessproperty for different values

of @par startuptime, setting it first to some small explicit value (e.g., 12) and increasing it by small

steps (e.g., 1) until counterexamples were no longer produced. By exploring different cases and different

cluster sizes, we were able to develop an understanding of the worst-case scenarios.

The deduced formula for worst-case startup time �sv ! ��*	, (which occurs when there is a faulty node) is

given in the following equations.

� v !9��*9, < � � �V�[���9�w 1)x DFB R KPO � !�#$� %$���(&)'
�w 14x DFB R � ��� #$�
< \PO � '_#$*`�E%zy KPO � ��� #$� R K{OP�
KPO � '_#$*`�E%Py KzO � �[� #$� � R � �[� #$�
< | O � '_#$*`�E% y mPO � ��� #$� W

17

5.4 Automated Verification and Exhaustive Fault Simulation

During exploration of the algorithm we were content to consider modest cluster sizes and fault degrees,

but for verification we wanted to examine larger clusters and “exhaustive” modeling of faults. The term

exhaustive fault simulation was chosen in analogy to fault injection and with respect to the nomenclature

given in [6]. While fault injection means actually to insert faults into physical systems, fault simulation is

concerned with modeling faulty behavior in a mathematically model. Exhaustive fault simulation means

that all hypothesized fault modes are modeled and all their possible scenarios are examined. In our case,

this means model checking our model of the startup algorithm with the fault degree set to 6. A desirable

goal is to be able to check all properties for a reasonable-sized cluster (say 5 nodes) overnight (say 12 hours,

or 43,200 seconds). In this section we give formulas to estimate the number of scenarios under test for
exhaustive fault simulation and report the performance achieved.

Different startup delays: Given a system of a nodes and K guardians, where each of the nodes and one of

the guardians was allowed to startup at an instant during a period of X ���}��� , the number of scenarios, ~ � ��*9, ~ ,
based on these different startup times is given by ~ � ��*9, ~ < �
X ���}��� � ���r� W
Worst-case startup scenarios with a faulty node: Given the worst-case startup time of the system ��v !9�[*	,
and the fault degree of a faulty node X;l &$��� *;'n� , the number of scenarios for one particular startup pattern of
nodes and hubs, ~ �.lN� � �n~ , is given by ~ �.lQ� � �_~ < �$�
X$l &$��� *`'_� � o �9�E�E���(����W

Numerical estimates for these parameters are given in Table 5.

nodes X ���}�V� ~ � ��*9, ~ X$l &)��� *;'_� � v !9��*9, ~ �UlN� � �n~\ K � \�W�\zO{� >h� d �Ed kzO{� > o5u� \hK \�W�\zO{� >�� d Kh\ dzO{� > q �m � > � W2��O{� >h� d \ > � W��zO{� > u)�
Figure 5: Number of Scenarios for Different Fault Degrees

The SAL symbolic model checker is able to count the number of reachable states in a model. For the
model used in the big-bang tests, these numbers were 1,084,122,880 states for 3 nodes, 508,573,786,112

for 4, and 259,220,300,300,290 for 5; these are approximately K o � , K q � , and K u)q states, respectively, in

reasonable agreement with Table 5.

Figures 6(a), 6(b), and 6(c) present the model checker performance for Lemmas 1, 2, and 3 in presence

of a faulty node with fault degree X;l &$�V� *`'_� < d and startup-delay X �V�}��� < k�O � '_#$*`�E% . The feedback column

indicates whether the feedback optimization was turned on or off. Figure 6(d) presents the results for Lemma

4 in presence of a faulty hub with startup-delay X �V�}��� < kzO � 'n#$*;�E% . Results are shown for models with \ ,
�
,

and m nodes. The eval column indicates if the respective lemma is satisfied.

The cpu time column gives the execution time of the corresponding model-checking run, while the BDD

column gives the number of BDD variables for the model (this is equivalent to the number of state bits after

eliminating those that are simple combinations of others). 300 or so state bits is usually considered the realm

of “industrial” model checking, where skilled tinkering may be needed to obtain a result in reasonable time.

Yet all these results were obtained with no special efforts beyond those described.

18

nodes feedback eval. cpu time BDD
(sec)
3 on true 62.45 248
4 on true 259.53 316
5 on true 920.74 422

(a) Results for Lemma safety

nodes feedback eval. cpu time BDD
(sec)
3 on true 228.03 250
4 on true 1242.73 318
5 on true 41264.08 424

(b) Results for Lemma liveness

nodes feedback wcsup eval. cpu time BDD
(slots) (sec)
3 on �Ed true 47.81 268
4 on Kh\ true 907.61 336
5 on \ > true 4480.90 442

(c) Results for Lemma timeliness

nodes eval. cpu time BDD
(sec)
3 true 56.65 272
4 true 82.95 348
5 true 4289.77 462

(d) Results for Lemma safety 2

Figure 6: Performance Results for Model Checking the Lemmas

6 Conclusion

We have presented the verification model and results of a model-checking study for a new startup algorithm

for the TTA. The startup algorithm guarantees a safe and timely system startup in the presence of any one

faulty component. Our model-checking experiments showed the robustness of the algorithm in the presence
of a faulty node or a faulty hub.

We described modeling concepts for abstracting the problem to discrete time, and for exhaustive fault

simulation. The resulting models have billions or even trillions of reachable states, yet the symbolic model

checker of SAL is able to examine these in a few tens of minutes (for billions of states) or hours (for

trillions). This combination of an effective modeling approach and an efficient tool allowed us to use model

checking over an exhaustive fault model in the design loop for the algorithm, and also helped us establish the

worst-case startup times. Thus, this approach extends previous experiments in model-checking fault-tolerant

algorithms such as [14] and [4] by vastly increasing the number of scenarios considered, while achieving

performance that allows the method to be used in design exploration as well as for verification.

Ongoing design work is concerned with a shift of complexity from the guardian algorithms to the node

algorithms to make the interlink connections unnecessary. In ongoing formal methods studies, we are ex-

ploring the use of the infinite-bounded model checker of SAL (which combines a SAT solver with decision

procedures for theories including real arithmetic) to develop and analyze models that use continuous time

[10], while still allowing rich fault models. We are also using the PVS theorem prover to formally verify

the algorithm and its fault hypothesis in their most general forms: even with exhaustive fault simulation, a

model checker still requires us explicitly to model each fault within the fault hypothesis. We may fail to be

truly exhaustive if our models are insufficiently aggressive—whereas a theorem prover can allow us simply

to state the properties assumed of each fault class, and thereby fully explore their consequences.

19

References

[1] A. Ademaj, G. Bauer, H. Sivencrona, and J. Torin. Evaluation of fault handling of the time-triggered

architecture with bus and star topology. In Proc. of International Conference on Dependable Systems

and Networks (DSN 2003), San Francisco, Jun. 2003.
[2] G. Bauer, H. Kopetz, and P. Puschner. Assumption coverage under different failure modes in the time-

triggered architecture. In Proc. of International Conference on Emerging Technologies and Factory

Automation, pages 333–341, Oct. 2001.
[3] G. Bauer, H. Kopetz, and W. Steiner. The central guardian approach to enforce fault isolation in a

time-triggered system. In Proc. of 6th International Symposium on Autonomous Decentralized Systems

(ISADS 2003), pages 37 –44, Pisa, Italy, Apr. 2003.
[4] C. Bernardeschi, A. Fantechi, and S. Gnesi. Model checking fault tolerant systems. Software Testing,

Verification and Reliability, 12:251–275, Dec. 2002.
[5] Formal Methods Program. Formal methods roadmap: PVS, ICS, and SAL. Technical Report SRI-

CSL-03-05, Computer Science Laboratory, SRI International, Menlo Park, CA, Oct. 2003. Available

at http://fm.csl.sri.com/doc/roadmap03.
[6] J.C.Laprie. Dependability: Basic Concepts and Terminology. Springer-Verlag, 1992.
[7] H. Kopetz. Fault containment and error detection in the time-triggered architecture. In Proc. of The

6th International Symposium on Autonomous Decentralized Systems (ISADS 2003), pages 139–146,

Pisa, Italy, Apr. 2003.
[8] H. Lönn and P. Pettersson. Formal verification of a TDMA protocol start-up mechanism. In Pacific

Rim International Symposium on Fault-Tolerant Systems (PRFTS ’97), pages 235–242, Taipei, Taiwan,

Dec. 1997. IEEE Computer Society.
[9] H. Pfeifer, D. Schwier, and F. W. von Henke. Formal verification for time-triggered clock synchroniza-

tion. In C. B. Weinstock and J. Rushby, editors, Dependable Computing for Critical Applications—7,

volume 12 of Dependable Computing and Fault Tolerant Systems, pages 207–226, San Jose, CA, Jan.

1999. IEEE Computer Society.
[10] M. Sorea. Bounded model checking for timed automata. Electronic Notes in Theoretical Computer Sci-

ence, 68(5), 2002. Available at http://www.elsevier.com/locate/entcs/volume68.
html.

[11] W. Steiner. SAL model of a TTA startup algorithm. Research Report 52/2003, Technische Universität

Wien, Institut für Technische Informatik, Treitlstr. 1-3/182-1, 1040 Vienna, Austria, 2003.
[12] W. Steiner and M. Paulitsch. The transition from asynchronous to synchronous system operation: An

approach for distributed fault-tolerant systems. In The 22nd International Conference on Distributed

Computing Systems (ICDCS ’02), pages 329–336, Vienna, Austria, July 2002. IEEE Computer Society.
[13] W. Steiner, M. Paulitsch, and H. Kopetz. Multiple failure correction in the time-triggered architecture.

Proc. of 9th Workshop on Object-oriented Real-time Dependable Systems (WORDS 2003f), Oct. 2003.
[14] T. Yokogawa, T. Tsuchiya, and T. Kikuno. Automatic verification of fault tolerance using model

checking. In Proc. of 2001 Pacific Rim International Symposium on Dependable Computing, page 95,

Seoul, Korea, Dec. 2001.

20

