
CSL Internal Note • October 28, 2003

The Needham-Schroeder Protocol in SAL

John Rushby
Computer Science Laboratory
SRI International
Menlo Park CA 94025 USA

This research was supported by NSA under contract MDA904-02-C-1196.

Computer Science Laboratory • 333 Ravenswood Ave. • Menlo Park, CA 94025 • (650) 326-6200 • Facsimile: (650) 859-2844

Abstract

The Needham-Schroeder authentication protocol is specified in SAL and its
model checker is used to detect the flaw discovered by Gavin Lowe. The SAL sim-
ulator is used to further explore the model of the protocol. This provides a simple
illustration in the use of SAL for this domain.

i

Contents

1 Introduction 1

2 Specification in SAL 2

3 Analysis in SAL 9
3.1 Exploration in SAL . 10

4 Conclusion 15

ii

1 Introduction

The Needham-Schroeder authentication protocol, first published in 1978 [NS78],
initiated a large body of work on the design and analysis of cryptographic protocols.
In 1995, Gavin Lowe published an attack on the protocol that had apparently been
undiscovered for the previous 17 years [Low95]. The following year, Lowe showed
how the flaw could be discovered mechanically by model checking [Low96], and this
has been followed by many papers on model checking and automated verification of
similar protocols. In this note, I describe how SAL can be used for this purpose. My
intent is simply to provide a simple illustration of the use of SAL in this domain.

I assume readers have some familiarity with the concepts and notation for cryp-
tographic protocols and their analysis. The Needham-Schroeder protocol is specified
as follows.

Message 1. A → B: A.B.{A,NA}PK(B)

Message 2. B → A: B.A.{NA, NB}PK(A)

Message 3. A → B: A.B.{NB}PK(B).

The intent of the protocol is to establish mutual authentication between the
principals A and B in the presence of an intruder who can intercept, delay, read,
copy, and generate messages, but who does not know the secret keys of the principals.

Principal A begins by sending to B a message containing the its own identity
and that of B in the clear, and an encrypted component containing a “nonce”
(a previously unused and unpredictable identifier) NA and its own identity. The
encryption uses B’s public key and can be decoded by B using its secret key, but is
indecipherable to all other participants.

B responds with a similar message to A, including the nonce received from A
and a new nonce of its own in the encrypted portion, which is readable only by A.

A examines the second message and concludes that it really is from B (since
only B could have discovered the nonce NA) and that it is not a replay (because the
nonce NA is current). It then returns the nonce NB to B under B’s public key. On
receipt of this message, B uses similar reasoning to determine that it really is from
A, and is current, and so both principals have authenticated the other.

The flaw discovered by Lowe uses an interleaving of two runs of the protocol, as
shown below. A initiates a run with principal I, who is corrupt (i.e., an intruder).
I then initiates a run with B, purporting to be A and using the nonce provided by
A. B replies with a message encrypted for A that I uses unchanged in a message of
its own to A. A decrypts this to discover B’s nonce (thinking it is I’s) and sends it
to I under I’s public key. I now knows B’s nonce and can complete its run with B.
At this point, B believes it has authenticated A, but it is actually talking to I.

1

Message 1a. A → I: A.I.{A,NA}PK(I)

Message 1b. IA → B: A.B.{A,NA}PK(B)

Message 2b. B → IA: B.A.{NA, NB}PK(A)

Message 2a. I → A: I.A.{NA, NB}PK(A)

Message 3a. A → I: A.I.{NB}PK(I)

Message 3b. IA → B: A.B.{NB}PK(B).

Here, IA indicates I masquerading as A, and the suffices a, and b on the message
numbers indicate which run of the protocol they belong to.

The protocol is easily fixed by including the identity of the responder in the
encrypted portion of the second message (this prevents the replay of the encrypted
portion of 2b in 2a).

Message 2′. B → A: B.A.{B,NA, NB}PK(A)

Our task now is to specify the protocol in SAL and to use its model checkers to
discover the bug and provide some assurance for the correction.

2 Specification in SAL

We need to model the behavior of the principals and the intruder. We also need
some model of the network over which messages are transmitted. The intruder is
generally assumed to have full control of the network, so the network must provide
suitable capabilities for the intruder.

We will model the network as a buffer that can hold at most one message and
provides four services: write, overwrite, read and copy. The write service is
applicable only when the buffer is empty; it stores the incoming message in the
buffer. The other services are applicable only when the buffer is full; overwrite
replaces the buffer contents with the incoming message, read empties the buffer and
returns its previous contents, while copy returns the contents and leaves the buffer
unchanged.

We want to make this network generic with respect to the type of messages, so we
enclose the network module in a SAL context (also called network) that takes the
msg type as a parameter (see Figure 1). The parameters to SAL contexts comprise a
list of types and a list of constants separated by a semicolon and enclosed in braces;
here the list of constants is empty, but we still need the semicolon.

Within this context, we define bufferstate and action as enumerated types,
then specify the network module. This module has inputs act (indicating the action
to be performed), and inms (indicating the message to be inserted in the network—
which is relevant only when act is either write or overwrite). The module has two
output variables: nstate records whether or not the buffer is full or empty, while
buffer records the contents of the buffer.

2

network{msg: TYPE;}: CONTEXT =
BEGIN

bufferstate: TYPE = {empty, full};
action: TYPE = {read, write, overwrite, copy};

network: MODULE =
BEGIN
INPUT act: action, inms: msg
OUTPUT nstate: bufferstate, buffer: msg

INITIALIZATION
nstate = empty;

TRANSITION
[
act’ = write AND nstate = empty -->
buffer’ = inms’;
nstate’ = full;

[]
act’ = overwrite AND nstate = full -->
buffer’ = inms’;

[]
act’ = read AND nstate = full -->
nstate’ = empty;

[]
act’ = copy AND nstate = full -->
nstate’ = nstate;

[]
ELSE -->

]
END;

END

Figure 1: The Network Context

3

The behavior of the network is specified by guarded commands; the ELSE case
applies when an action is invoked in an inappropriate state (e.g., act = read
when nstate = empty). The bodies of the guarded commands specify the new
(primed) values of local and output variables; variables not explicitly mentioned
are left unchanged. Observe that it is the new (primed) value of act that appears
in the guards: this is so that the network responds immediately to the actions
requested by its clients and makes it much easier to interpret counterexamples. We
place the network context in a file called network.sal and check it for syntax and
wellformedness by the command

sal-wfc network

to which the response Ok. indicates that all is well.
We can now specify the behavior of the principals and intruder within a context

needhamschroeder. We begin by specifying an enumerated type ids that will be
used to identify the participants. This type should have sufficient elements to name
as many principles and intruders as we wish to examine, plus an extra element X
that is used as an “error” element in certain constructions. For our purposes, two
principals and one intruder are sufficient.

needhamschroeder: CONTEXT =
BEGIN
ids: TYPE = {a, b, e, X};

participants: TYPE = {x: ids | x /= X};
intruder(x: participants): BOOLEAN = x=e;

intruders: TYPE = {x: participants | intruder(x)};
principals: TYPE = {x: participants | NOT intruder(x)};

We then identify participants as the subtype of ids that are not the “error”
value, and provide a predicate intruder that indicates the ids corresponding to the
intruder(s); here only e is an intruder. We then specify intruders as the subtype
of participants that are intruders and principals as the dual subtype that are
not intruders.

Each principal must be able to generate as many nonces as the number of proto-
col runs that it participates in. For our purposes, we need consider only single runs,
so each principal needs only a single nonce. An implementation of the protocol must
generate nonces in a way that makes it infeasible for the intruder to guess them,
but in modeling we can simply not endow the intruder with guessing ability and
then can make the nonces deterministic. We do this by reusing ids as nonces: each
participant’s nonce is its own id.

nonces: TYPE = ids;
nonce(a: participants): nonces = a;

4

Messages contain an encrypted component; when decrypted, this component is
a tuple, which we call a dmsg (for “decrypted message”), containing an id and two
nonces. The constant arb is a dmsg whose elements are all X; it is used to represent
an “uninitialized” dmsg (otherwise the model checker may “guess” a magical value).
When encrypted, a dmsg yields an emsg (for “encrypted message”), which we specify
as a datatype with constructor enc (for “encrypt”) and accessors key (the id of the
participant whose public key is used) and payload (the dmsg that is encrypted).
Messages that are sent to the network must contain the id of the sender and intended
recipient as well as the actual emsg to be communicated; we represent these kinds
of messages by the record type msg. Notice that we have used a tuple, a datatype,
and a record to represent the similar types dmsg, emsg, and msg, respectively; this
is done purely to illustrate use of these three constructors.

dmsg: TYPE = [ids, nonces, nonces];
arb: dmsg = (X,X,X);

emsg: TYPE = DATATYPE
enc(key: ids, payload: dmsg)

END;

msg: TYPE = [# from: participants, to: participants, em: emsg #];

Now that we have the type msg of messages that are used, we can instantiate
the context network appropriately and give the instantiation the abbreviated name
net.

net: CONTEXT = network{msg;};

A participant can decrypt an emsg only if the key matches its own id, otherwise
it gets the arb value. We specify this in the function dec.

dec(k: participants, m:emsg): dmsg =
IF key(m)=k THEN payload(m) ELSE arb ENDIF;

During the protocol, principals progress through some of five possible states,
which we identify in the enumerated type states.

states: TYPE = {sleeping, waiting, tentative, engaged, responding};

The behavior of the i’th principal is specified in a module called principal,
parameterized by i. This module takes as inputs the state of the network, and
a message imsg from the network (which may be invalid if the state is empty).
Observe how an exclamation point is used to extract the type bufferstate from
the network instance net. The outputs of the module are the action it performs on

5

the network and the message the action is applied to (relevant only for write and
overwrite). However, in SAL, output variables may be written by only a single
module, whereas we will have a module for each principal and each of these will be
writing to these variables, so they must be declared as global rather than output.
The module has two local state variables: pc (the “program counter”) records where
it is in the protocol, and responder records the principal which it is authenticating.

principal[i: principals]: MODULE =
BEGIN
INPUT nstate: net!bufferstate, imsg: msg
GLOBAL act: net!action, omsg: msg
LOCAL pc: states, responder: participants

INITIALIZATION
pc = sleeping;
responder = i;

Initially, the principal is sleeping, and its responder is set to itself.
The protocol is specified as a series of guarded commands in the transition

section of the module. The first set of rules applies when a principal is sleeping and
decides to initiate a run of the protocol with another participant j different to itself.
Notice the “quantification” over j, and notice that it is over participants, not
just principals. This is because we must allow a principal to initiate the protocol
with an intruder. The command can be used only when the net is empty, in which
case the principal constructs the first message of the protocol and writes it to the
network. Observe that (i, nonce(i), X) constructs the tuple consisting of i’s id,
its nonce, and the “empty” nonce X. The construction enc(j, (i, nonce(i), X))
then encrypts this dmsg with j’s key and (# from := i, to := j, em := enc(j,
(i, nonce(i), X)) #) then constructs the msg to be written to the network: the
(#...#) construction is a record constructor containing “assignments” to its fields.
The principal records j as its responder, and enters the waiting state.

TRANSITION
[
([] (j: participants): i /= j AND
pc = sleeping AND nstate = net!empty -->
pc’ = waiting;
responder’ = j;
omsg’ = (# from := i, to := j, em := enc(j, (i, nonce(i), X)) #);
act’ = net!write;

)

The next set of commands describe the action of a principal that receives a
message produced as described above. The command applies only if the principal is
sleeping, the net is full, and contains a message from a principal j different to i

6

that is addressed to i and encrypted with its key. In this case, it extracts the nonce
from the message, constructs the second message of the protocol, and overwrites
the message on the network. The principal records i as its responder, and enters
the tentative state.

1[]
([] (j: participants): i /= j AND

pc = sleeping AND nstate = net!full
AND imsg.from = j AND imsg.to = i AND dec(i, imsg.em).1=j -->

responder’ = j;
pc’ = tentative;
act’ = net!overwrite;
omsg’ = (# from := i, to := j,

em := enc(j, (X, dec(i,imsg.em).2, nonce(i))) #);
)

A principal in the waiting state that finds the network full, containing a
message from its responder addressed to itself, encrypted under its own key (if it
were not, the value of dec(i,imsg.em).2 would be X), and bearing its own nonce,
constructs the third message of the protocol, and enters the engaged state.

2[]
pc = waiting AND nstate = net!full

AND imsg.from = responder AND imsg.to = i
AND dec(i,imsg.em).2 = nonce(i) -->

pc’ = engaged;
act’ = net!overwrite;
omsg’ = (# from := i, to := responder,

em := enc(responder, (X, dec(i,imsg.em).3, X)) #);

A principal in the tentative state that finds the network full, containing a
message from its responder addressed to itself, encrypted under its own key, and
bearing its own nonce, enters the responding state.

[]
pc = tentative AND nstate = net!full

AND imsg.from = responder AND imsg.to = i
AND dec(i,imsg.em).3 = nonce(i) -->

pc’ = responding;
act’ = net!read;

In all other cases, the principal does nothing.

[]
ELSE -->

]
END;

7

Next, we specify the behavior of the intruder(s); we allow more than one so the
module intruder is parameterized by the id x of the intruder concerned. The global
and input variables of an intruder are the same as those of a principal. Intruders
operate by remembering messages that they have seen (but may not be able to
decrypt), together with any nonces they have recovered from messages that they
can decrypt. We need to allocate local variables for however many messages and
nonces we allow an intruder to remember. For our purposes, one of each is sufficient:
nmem is the memory for a nonce, and mmem the memory for an emsg; we also need n1
and n2 as temporaries for holding nonces. We initialize the memories to harmless
values.

intruder[x:intruders]: MODULE =
BEGIN
GLOBAL act: net!action, omsg: msg
INPUT nstate: net!bufferstate, imsg: msg
LOCAL nmem, n1, n2: nonces, mmem: emsg

INITIALIZATION
nmem = nonce(e);
mmem = enc(X,(X,X,X));

The first thing an intruder can do is read messages addressed to itself. This
guarded command applies when the network is full, the message is addressed to
x, and uses its key. The intruder extracts the nonce in the second position of the
decrypted message: this is the value dec(x,imsg.em).2 (which will be X if the
message did not use x’s key). It then nondeterministically chooses either to store
this value in nmem, or to leave that value unchanged: the IN construction specifies
this nondeterministic choice. The intruder similarly makes a nondeterministic choice
whether to read or copy the message.

TRANSITION
[
nstate = net!full AND imsg.to = x -->
nmem’ IN {dec(x,imsg.em).2, nmem};
act’ IN {net!read, net!copy};

When a message is not addressed to the intruder, it cannot decrypt it, but it
can choose to save the whole encrypted portion of the message.

[]
nstate = net!full AND imsg.to /= x -->
mmem’ IN {imsg.em, mmem};
act’ IN {net!read, net!copy};

The intruder can nondeterministically choose to send the encrypted message it
has remembered to a principal j, while masquerading as i.

8

[]
([] (i: participants, j: principals): TRUE -->

act’ = IF nstate = net!empty THEN net!write ELSE net!overwrite ENDIF;
omsg’ = (# from := i, to := j, em := mmem #);

)

Similarly, the intruder can nondeterministically construct a message containing
its own nonce and the one it has remembered.

[]
([] (i: participants, j: principals): TRUE -->

act’ = IF nstate = net!empty THEN net!write ELSE net!overwrite ENDIF;
n1’ IN {nmem, nonce(x)};
n2’ IN {nmem, nonce(x)};
omsg’ = (# from := i, to := j, em := enc(j, (i, n1’, n2’)) #);

)

In all other circumstances, it does nothing.

[]
ELSE -->

]
END;

We now construct a complete system by asynchronously composing some collec-
tion of principals and intruders, and synchronously composing that compound with
the network. We rename the buffer and inms of the network so that they connect
up to the imsg and omsg of the principals and intruder.

system: MODULE = (([] (id: principals): principal[id]) [] intruder[e])
|| (RENAME buffer TO imsg, inms TO omsg IN net!network);

Here, our principals are a and b, and there is but a single intruder e.

3 Analysis in SAL

The property we wish to examine is correct authentication: whenever a principal x
reaches the responding state with a principal y, then it must be that y initiated
the protocol with x—that is, y must be in the waiting or engaged states and have
x as its responder. We specify this as the property prop.

prop: THEOREM system |- G((FORALL (x,y: principals):
(pc[x]=responding AND responder[x]=y) =>

((pc[y]=waiting OR pc[y]=engaged) AND responder[y]=x)));

END

9

We place the needhamschroeder context in a file of the same name and invoke
the SAL symbolic model checker as follows.

sal-smc needhamschroeder prop

Within a few seconds, this reports that prop is invalid and produces a coun-
terexample comprising 10 steps. The counterexample trace is rather verbose, so I
provide an abbreviated version with commentary on each step in Figure 2. A similar
counterexample can be found using the bounded model checker.

sal-bmc needhamschroeder prop

The counterexamples found by SAL are equivalent the one described in the intro-
duction.

The weakness in the protocol that is exploited in the counterexamples is the
lack of any indication of the sender in the encrypted part of message 2. This can be
corrected by changing the final assignment in 1 on page 7 to the following (the X
is changed to i).

omsg’ = (# from := i, to := j,
em := enc(j, (i, dec(i,imsg.em).2, nonce(i))) #);

The guard in 2 must then be changed (by addition of the third line below) to
check that the message really does come from the expected responder.

pc = waiting AND nstate = net!full
AND imsg.from = responder AND imsg.to = i
AND dec(i,imsg.em).1 = responder
AND dec(i,imsg.em).2 = nonce(i) -->

With these changes, the SAL symbolic model checker proves prop. Of course,
“prove” has a rather limited meaning in model checking: we have proved that the
property is not violated by any run of the protocol within the limits established by
this specific model. To prove that it is sound in general, we need to use more classical
theorem proving within an environment such as PVS, where unlimited numbers of
runs and participants can be considered: see, for example [MR00]. The state of the
art in fully automated cryptographic protocol analysis uses constraint satisfaction
procedures to solve the problem for arbitrary, but bounded, numbers of runs [MS01].

3.1 Exploration in SAL

In addition to finding bugs and proving (limited) correctness, model checking also
can be used to explore behaviors in either a random or directed manner. This
can be very useful as a way to gain an understanding of the possibilities contained

10

Step 0: Initialization
--
Step 1: a sends message 1 to e

pc[a] = waiting; pc[b] = sleeping;
responder[a] = e;
omsg.from = a; omsg.to = e; omsg.em = enc(e, (a, a, X));
--
Step 2: e remembers a’s nonce

nmem = a;
--
Step 3: e (masquerading as a) send message 1 to b

omsg.from = a; omsg.to = b; omsg.em = enc(b, (a, a, a));
--
Step 4: b sends message 2 to a, but it is intercepted by e

pc[a] = waiting; pc[b] = tentative;
responder[b] = a;
omsg.from = b; omsg.to = a; omsg.em = enc(a, (X, a, b));
--
Step 5: e remembers encrypted part of b’s message

mmem = enc(a, (X, a, b));
--
Step 6: e sends message 2 (using remembered part) to a

omsg.from = e; omsg.to = a; omsg.em = enc(a, (X, a, b));
--
Step 7: a sends message 3 to e

pc[a] = engaged; pc[b] = tentative;
omsg.from = a; omsg.to = e; omsg.em = enc(e, (X, b, X));
--
Step 8: e remembers b’s nonce from a’s message 3

nmem = b;
--
Step 9: e (masquerading as a) sends message 3 to b (with remembered nonce)

omsg.from = a; omsg.to = b; omsg.em = enc(b, (a, e, b));
--
Step 10: b falsely believes it has authenticated a

pc[b] = responding;

Figure 2: Counterexample Trace Found by SAL Model Checker

11

within a specification. The crudest form of exploration is random simulation. This
can be accomplished in SAL with sal-pathfinder, which uses the bounded model
checker to construct an example path of a given length. For example, the following
command constructs a path of length 20.

sal-path-finder -v 1 -d 20 needhamschroeder system

A rather more directed approach uses the model checkers to find a path to some
state of interest. Here, we characterize the states of interest by some predicate p,
then model check G(NOT p). For example, suppose we are interested in the states
where the intruder has spoofed both principals and brought them to the tentative
state. The property here is

pc[a]=tentative AND pc[b]=tentative

so we check the following property.

test: THEOREM system |- G(NOT (pc[a]=tentative AND pc[b]=tentative));

We can use either the symbolic model checker

sal-smc -v 1 needhamschroeder test

or the bounded model checker

sal-bmc -v 1 -d 20 -it needhamschroeder test

to construct the path to the state of interest. The argument -d 20 tells the bounded
model checker to search to a maximum path length of 20, while the argument -it
tells it to do so by iterative deepening (i.e., starting at 1 and incrementing by 1 each
time) so that it is sure to find the shortest path.

The most controlled method of exploration uses the SAL Simulator. This builds
on the machinery of the symbolic model checker to allow the statespace to be ex-
plored under interactive guidance. In the example below, we start sal-sim, then
instruct it to import the needhamschroeder context, and start the simulation (the
#unspecified string is an artifact of the simulation environment).

> sal-sim
SAL Simulator (Version 2.0). Copyright (c) 2003 SRI International.
Build date: Fri Oct 24 17:07:50 PDT 2003
Type ‘(exit)’ to exit.
Type ‘(help)’ for help.
sal > (import! "needhamschroeder")
#unspecified
sal > (start-simulation! "system")
#unspecified

12

At each point, the state of the simulation is a set of states. The com-
mand (step!) picks one of these arbitrarily, and then computes all its succes-
sors, which then become the new current state of the simulation. The command
(display-curr-states) prints the current states, up to some maximum number
(ten by default). The tenth state of this particular simulation (following the step)
is shown below.

State 10
--- System Variables (assignments) ---
(= act write);
(= imsg.em (enc e (mk-tuple b b X)));
(= imsg.from b);
(= imsg.to e);
(= mmem (enc X (mk-tuple X X X)));
(= n1 b);
(= n2 e);
(= nmem e);
(= nstate full);
(= omsg.em (enc e (mk-tuple b b X)));
(= omsg.from b);
(= omsg.to e);
(= pc[a] sleeping);
(= pc[b] waiting);
(= responder[a] a);
(= responder[b] e);

Notice that it uses the lsal syntax (this is an alternative, Lisp-like syntax for SAL).
The command (display-curr-trace) picks one of the current states arbitrarily,
then prints the path to reach it.

If we are interested in exploring the trace found earlier by model-checking the
test property, we can see from that trace that we need to select a state where
the intruder sends a message with the em field equal to enc(b, (a, e, e)). We
can prune the current set of states to just those having this value by the following
command.

(filter-curr-states! "(= omsg.em (enc b (mk-tuple a e e)))")

It is easy to construct the lsal expressions needed by looking at those that are printed
by the (display-curr-states) command. We can now take another step, prune
again, and iterate this process to reach a state in which both principals are in the
tentative state.

13

(step!)
(filter-curr-states! "(= pc[b] tentative)")
(step!)
(filter-curr-states! "(= omsg.em (enc a (mk-tuple e e e)))")
(step!)
(filter-curr-states! "(= pc[a] tentative)")

We have now reached the situation of interest to us and can explore forwards
and backwards using the capabilities of the simulator. Because the simulator is built
on the machinery of a model checker, these capabilities go far beyond those of an
ordinary simulator. In particular, the SAL Simulator can search from the current
set of states forward to find states satisfying a given property, or report that the
property is unreachable from the current set of states. For example, we may be
interested to check that the intruder can complete its spoofing of the participants
and bring either of them to the responding state.

(run! "(or (= pc[a] responding) (= pc[b] responding))")

Here, the simulator reports #f, meaning that it could not find a path to a state
satisfying this property. Perplexed, we restart the system and search from the
beginning for a state in which principal a is responding to the intruder.

(start-simulation! "system")
(run! "(and (= pc[a] responding) (= responder[a] e))")

Again, we learn there is no such path. So now we look for a state in which the
intruder has brought a to the tentative state (which we already know is possible).

(run! "(and (= pc[a] tentative) (= responder[a] e))")

We can display the current states or trace to reinforce our understanding at this
point, but we know that the intruder should be able to deliver the message that
takes a to the responding state provided it knows a’s nonce (which is also a). We
look to see if the intruder knows this nonce in any of the current states.

(filter-curr-states! "(= nmem a)")
(display-curr-states)

The simulator responds #t, which means the current set of states is empty. So now
we backtrack, return to our previous state (the first run! command below), then
search forward to a state in which the intruder knows the nonce (the second run!
command).

(backtrack!)
(run! "(and (= pc[a] tentative) (= responder[a] e))")
(run! "(= nmem a)")

14

Again, we find there is no path to this property once a is in the tentative state
and responding to e. So now we search for any path to a state in which the intruder
knows a’s nonce.

(backtrack!)
(run! "(= nmem a)")

The simulator finds suitable paths, but we see that they all lead to states in which
a has initiated the protocol (i.e., it is in the waiting state). We have now collected
enough information to reexamine our model of the intruder: it seems that it can
discover nonces from the first message of a protocol run, but not the second. The
difference between these two cases is that the “other” nonce is in the second position
of the emsg tuple in the former case, and the third in the latter. Sure enough, the
command in the relevant step of the intruder is the following.

nmem’ IN {dec(x,imsg.em).2, nmem};

It should, of course, be changed as follows.

nmem’ IN {dec(x,imsg.em).2, dec(x,imsg.em).3, nmem};

After making this change, we exit the simulator and restart it, and once again
check the property of interest.

(import! "needhamschroeder")
(start-simulation! "system")
(run! "(and (= pc[a] responding) (= responder[a] e))")

This time, the simulator is able to find a suitable path.
The SAL Simulator is implemented as a set of scripts in the Scheme language.

The scripts that interpret most of the high-level commands are just two or three
lines long: all the real work is done by calling the functions on the BDD interface
used by the symbolic model checker. It is easy for users to write their own Scheme
scripts to extend the functionality of the simulator interface.

4 Conclusion

This example has introduced some aspects of the SAL language not used in the
other tutorial examples (for example, parameterized contexts and multiple files). It
should also provide a start to those who wish to use SAL to analyze cryptographic
protocols. More complex protocols may require a more complex intruder model
(for example one that remembers multiple messages and nonces) and may require
more participants and more interleaved runs, but the basic approach should extend
quite easily. You can download the SAL files developed in this note from http:
//www.csl.sri.com/users/rushby/abstracts/needham03.

15

http://www.csl.sri.com/users/rushby/abstracts/needham03
http://www.csl.sri.com/users/rushby/abstracts/needham03

References

[Low95] Gavin Lowe. An attack on the Needham-Schroeder public-key authenti-
cation protocol. Information Processing Letters, 56(3):131–133, February
1995. 1

[Low96] Gavin Lowe. Breaking and fixing the Needham-Schroeder public-key proto-
col using FDR. In Tools and Algorithms for the Construction and Analysis
of Systems TACAS ’96, volume 1055 of Lecture Notes in Computer Science,
pages 147–166, Passau, Germany, March 1996. Springer-Verlag. 1

[MR00] Jonathan Millen and Harald Rueß. Protocol-independent secrecy. In
Michael Reiter and Roger Needham, editors, Proceedings of the Sympo-
sium on Security and Privacy, pages 110–119, Oakland, CA, May 2000.
IEEE Computer Society. 10

[MS01] Jonathan Millen and Vitaly Shmatikov. Constraint solving for bounded-
process cryptographic protocol analysis. In 8th ACM Conference on Com-
puter and Communications Security (CCS ’01), pages 166–175, Philadel-
phia, PA, November 2001. Association for Computing Machinery. 10

[NS78] Roger Needham and Michael Schroeder. Using encryption for authen-
tication in large networks of computers. Communications of the ACM,
21(12):993–999, December 1978. 1

16

	Contents
	Introduction
	Specification in SAL
	Analysis in SAL
	Exploration in SAL

	Conclusion
	References

