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Chapter 1

Introduction

The SAL environment (SALenv) provides an integrated environment and a set of batch
commands for the development and analysis of SAL specifications. This tutorial provides a
short introduction to the usage of the main functionalities of SALenv.

1.1 The SAL environment

SALenv runs on PC systems running RedHat Linux or Windows XP (under cygwin), and
Solaris (SPARC) workstations. We also believe that the system can be compiled for any
UNIX variant. SALenv is implemented in Scheme and C++, but it is not necessary to know
any of these languages to effectively use the system. Actually, basic notions of the Scheme
language are necessary if you intend to customize the behavior of SALenv.

1.2 The SAL language

The SAL language is not that different from the input languages used by various other
verification tools such as SMV, Murphi, Mocha, and SPIN. Like these languages, SAL
describes transition systems in terms of initialization and transition commands. These can
be given by variable-wise definitions in the style of SMV or as guarded commands in the
style of Murphi.

1.3 Examples

In this tutorial we describe the SAL language by presenting some examples. A complete
description of the SAL language is available online at http://sal.csl.sri.com/. The
abstract syntaxt tree of SAL is specified in XML. The SALenv tools also accept two machine-
friendly formats for other programs: XML and a Lisp-like syntax.
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Chapter 1. Introduction 4

1.4 SALPATH

All SALenv tools search for context files in the path specified by the environment variable
SALPATH. If you are using bash, then you should modify your .bashrc file. For instance, to
set SALPATH to the current and the /homes/leonardo/tmp directories, you should add the
following command to your .bashrc file:

export SALPATH=.:/homes/leonardo/tmp

If you are using tcsh, then you should modify your .cshrc file:

setenv SALPATH .:/homes/leonardo/tmp

If the environment variable SALPATH is not specified, then the tools will only search for
SAL context files in the current directory.
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A Simple Example

Consider the simple SAL specification in Figure 1. A SAL context is a “container” of types,
constants, and modules (i.e., transition systems). The specification in Figure 1 specifies the
context short, which contains a type (State), and a module declaration (main). The type
State is an enumerated type consisting of two elements: ready, and busy. The module
main specifies a transition system which contains: a boolean input variable (request), and
an output variable (state) of type State. The variable state is initialized with the value
ready. The TRANSITION section specifies a “step” of the transition system. In SAL, the
notation X’ is used to denote the next value of the variable X. In the module main, the
next value of state is busy when the current value is ready and the input request is true,
otherwise the next value is any element in the set {ready, busy} (remark: the IN construct
is used to specify nondeterministic assignments). Observe that a module can only specify
the initial and next values of controlled variables: output, local and global variables.

1short: CONTEXT =

BEGIN

State: TYPE = {ready, busy};

main: MODULE =

BEGIN

INPUT request : BOOLEAN

OUTPUT state : State

INITIALIZATION

state = ready

TRANSITION

state’ IN IF (state = ready) AND request THEN

{busy}
ELSE

{ready, busy}
ENDIF

END;

END

5



Chapter 2. A Simple Example 6

The context short is available on the SAL distribution package in the examples direc-
tory.

2.1 Simulator

SALenv contains a simulator for finite state specifications based on BDDs (Binary Decision
Diagrams). The simulator allows users to explore different execution paths of a SAL spec-
ification. In this way, users can increase their confidence in their model before performing
verification. Actually, the SALenv simulator is not a regular simulator, since it is scriptable,
that is, users can use the Scheme programming language to implement new simulation and
verification procedures, and to automate repetitive tasks.

Now, assuming that the current directory contains the file short.sal, the current direc-
tory is in the SALPATH, and the SALenv tools are in the PATH, the simulator can be started
executing the command sal-sim. The symbol % is used to represent the system prompt.

% sal-sim

SAL Simulator (Version 2.1). Copyright (c) 2003, 2004 SRI International.

Build date: Wed Jan 21 11:34:54 PST 2004

Type ‘(exit)’ to exit.

Type ‘(help)’ for help.

sal >

Now, users can import the context short using the command:

sal > (import! "short")

Command (help-commands) prints the main commands available in the simulator. The
following commmand can be used to start the simulation of the module main.

sal > (start-simulation! "main")

The simulation initialized by command start-simulation! is composed of: a cur-
rent trace, a current finite state machine, and a set of already visited states. Ac-
tually, the “current trace” may represent a set of traces, since a trace is list of set
of states. Command (display-curr-trace) prints one of the traces in the “current
trace”. Initially, the “current trace” contains just the set of initial states. We say
the first element in the list “current trace” is the set of current states. Command
(display-curr-states) displays the set of current states, its default behavior is to print
at most 10 states, but (display-curr-states <num>) can be used to print at most <num>
states. Command (display-curr-states) assigns an index (positive number) to the
printed states. Then, users can use this index to peek at a specific state using the command
(select-state! <idx>), which restricts the set of current states to the single selected
state.
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sal > (display-curr-states)

State 1

--- Input Variables (assignments) ---

(= request true);

--- System Variables (assignments) ---

(= state ready);

-----------------------------

State 2

--- Input Variables (assignments) ---

(= request false);

--- System Variables (assignments) ---

(= state ready);

-----------------------------

sal > (select-state! 1)

sal > (display-curr-states)

State 1

--- Input Variables (assignments) ---

(= request true);

--- System Variables (assignments) ---

(= state ready);

-----------------------------

Command (step!) performs a simulation step, that is, it appends the successors of the
set of current states in the current trace. Clearly, the set of current states is also updated.

sal > (step!)

sal > (display-curr-trace)

Step 0:

--- Input Variables (assignments) ---

(= request true);

--- System Variables (assignments) ---

(= state ready);

------------------------

Step 1:

--- Input Variables (assignments) ---

(= request false);

--- System Variables (assignments) ---

(= state busy);

Command (filter-curr-states! <constraint>) provides an alternative way to select
a subset of the set of current states. The argument of filter-curr-states! is a BDD or
a SAL expression. The new set of current states will contain only states that satisfy the
given constraint.
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sal > (filter-curr-states! "(not request)")

sal > (display-curr-states)

State 1

--- Input Variables (assignments) ---

(= request false);

--- System Variables (assignments) ---

(= state busy);

-----------------------------

As described before, users can automate repetitive tasks using the Scheme programming
language. For instance, the following example shows how to define a new command called
(n-step! n):

sal > (define (n-step! n)

(when (> n 0)

(select-state! 1)

(step!)

(n-step! (- n 1))))

sal > (n-step! 3)

sal > (display-curr-trace)

Step 0:

--- Input Variables (assignments) ---

(= request true);

--- System Variables (assignments) ---

(= state ready);

------------------------

...

------------------------

Step 4:

--- Input Variables (assignments) ---

(= request true);

--- System Variables (assignments) ---

(= state ready);

User defined commands such as (n-step! n) can be stored in files and loaded in the
simulator using command (load "<file-name>").

Command (sal/reset!) forces garbage collection and reinitializes all datastructures
(e.g., caches) used by the simulator. It is useful to call (sal/reset!) before starting the
simulation of a different module.

2.2 Path Finder

The sal-path-finder is a random trace generator for SAL modules based on SAT solving.
For instance, the following command produces a trace for the module main located in the
context short.
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% sal-path-finder short main

========================

Path

========================

Step 0:

--- Input Variables (assignments) ---

request = false;

--- System Variables (assignments) ---

state = ready;

------------------------

...

------------------------

Step 10:

--- Input Variables (assignments) ---

request = false;

--- System Variables (assignments) ---

state = ready;

The default behavior of sal-path-finder is to produce a trace with 10 transitions. The
option --depth=<num> can be used to control the length of the trace.

% sal-path-finder --depth=5 short main

...

2.3 Model Checking

SALenv contains a symbolic model checker called sal-smc. sal-smc allows users to specify
properties in linear temporal logic (LTL), and computation tree logic (CTL). However, in
the current version SALenv does not print counterexamples for CTL properties. When
users specify an invalid property in LTL, a counterexample is produced. LTL formulas state
properties about each linear path induced by a module (transition system). Typical LTL
operators are:

• G(p) (read “always p”), stating that p is always true.

• F(p) (read “eventually p”), stating that p will be eventually true.

• U(p,q) (read “p until q”), stating that p holds until a state is reached where q holds.

• X(p) (read “next p”), stating that p is true in the next state.

For instance, the formula G(p => F(q)) states that whenever p holds, q will eventually
hold. The formula G(F(p)) states that p holds infinitely often.

Typical CTL operators are:

• AG(p), stating that p is globally true.

• EG(p), stating that there is a path where p is continuously true.

• AF(p), stating that for all paths p is eventually true.
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• EF(p), stating that there is a path where p is eventually true.

• AU(p,q), stating that in all paths p holds until a state is reached where q holds.

• EU(p,q), stating that there is a path where p holds until a state is reached where q
holds.

• AX(p), stating that p holds in all successor states.

• EX(p), stating that there is a successor state where p holds.

Figure 2 contains three different ways to state the same property of the module main.
The third property uses the ltllib context, which defines several “macros” for commonly
used LTL patterns. ltllib!responds_to is a qualified name in SAL, it is a reference to
the function responds_to located in the context ltllib.

2th1: THEOREM main |- AG(request => AF(state = busy));

th2: THEOREM main |- G(request => F(state = busy));

th3: THEOREM main |- ltllib!responds_to(state = busy, request);

These properties can be verified using the following commands:

% sal-smc short th1

proved.

% sal-smc short th2

proved.

% sal-smc short th3

proved.

SALenv also contains a bounded model checker called sal-bmc. This model checker
only supports LTL formulas, and it is basically used for refutation, although it can produce
proofs by induction for safety properties.

% sal-bmc short th2

no counterexample between depths: [0, 10].

% sal-bmc short th3

no counterexample between depths: [0, 10].

The default behavior is to look for counterexamples up to depth 10. The option
--depth=<num> can be used to control the depth of the search. The option --iterative
forces the model checker to use iterative deepening, and it is useful to find the shortest
counterexample for a given property.

% sal-bmc --depth=20 short th2

no counterexample between depths: [0, 20].



Chapter 3

The Peterson Protocol

In this chapter, we illustrate SAL model checking via a simplified version of Peterson’s
algorithm for 2-process mutual exclusion. The SAL files for this example are located in
the following subdirectory in the SAL distribution package: examples/peterson. The
2-process version of the mutual exclusion problem requires that two processes are never
simultaneously in their respective critical sections. The behavior of each process is modeled
by a SAL module. Actually, we use a parametric SAL module to specify the behavior of
both processes. The prefix pc denotes program counter. When pc1 (pc2) is set to the
value critical, process 1(2) is in its critical section. The noncritical section has two self-
explanatory phases: sleeping and trying. Each process is allowed to observe whether or
not the other process is sleeping. The variables x1 and x2 control the access to the critical
section.

Figure 3 contains the specification of the context peterson. PC is an enumerated type.
This type consists of three values: sleeping, trying, and critical. Since the behavior
of the two processes in the Peterson’s protocol is quite similar, a parametric SAL module
(mutex) is used to specify them. In this way, process[FALSE] describes the behavior of
the first process, and process[TRUE] the behavior of the other one. It is important to note
that the variable pc1 in the module process represents the program counter of the current
process, and pc2 the program counter of the other process. It is a good idea to label guarded
commands, since it helps us to understand the counterexamples. So, the following labels
are used: wakening, entering_critical, and leaving_critical.

11
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3peterson: CONTEXT =

BEGIN

PC: TYPE = sleeping, trying, critical;

process [tval : BOOLEAN]: MODULE =

BEGIN

INPUT pc2 : PC

INPUT x2 : BOOLEAN

OUTPUT pc1 : PC

OUTPUT x1 : BOOLEAN

INITIALIZATION

pc1 = sleeping

TRANSITION

[

wakening:

pc1 = sleeping --> pc1’ = trying; x1’ = x2 = tval

[]

entering_critical:

pc1 = trying AND (pc2 = sleeping OR x1 = (x2 /= tval))

--> pc1’ = critical

[]

leaving_critical:

pc1 = critical --> pc1’ = sleeping; x1’ = x2 = tval

]

END;

END

Initially, the program counter is set to sleeping. The transition section is composed
by three guarded commands which describe the three phases of the algorithm. The entire
system is specified by performing the asynchronous composition of two instances of the
module process.

system: MODULE =

process[FALSE]

[]

RENAME pc2 TO pc1, pc1 TO pc2,

x2 TO x1, x1 TO x2

IN process[TRUE];

3.1 Path Finder

The following command can be used to obtain an execution trace (with 5 steps) of the
Peterson’s protocol.

% sal-path-finder -v 2 -d 5 peterson system

...

The option -v 2 sets the verbosity level to 2, the produced verbose messages allow users
to follow the steps performed by the SALenv tools. The option -d 5 sets the number of



Chapter 3. The Peterson Protocol 13

execution steps. Figure 4 contains a fragment of the trace produced by sal-path-finder.
The trace contains detailed information about each transition performed.

4Step 0:

--- System Variables (assignments) ---

pc1 = sleeping;

pc2 = sleeping;

x1 = false;

x2 = false;

------------------------

Transition Information:

(module instance at [Context: scratch, line(1), column(11)]

(module instance at [Context: peterson, line(33), column(10)]

(label wakening

transition at [Context: peterson, line(14), column(10)])))

------------------------

Step 1:

--- System Variables (assignments) ---

pc1 = sleeping;

pc2 = trying;

x1 = false;

x2 = false;

------------------------

...

The following command uses ZCHAFF to obtain an execution trace (with 20 steps) of
the Peterson’s protocol. You must have ZCHAFF installed in your machine to use this
command. ZCHAFF is not part of the SAL distribution package.

% sal-path-finder -v 2 -d 20 -s zchaff peterson system

...

3.2 Model Checking

The main property of the Peterson’s protocol is mutual-exclusion, that is, it is not possible
for more than one process to enter the critical section at the same time. This safety property
can be stated in the following way:

mutex: THEOREM system |- G(NOT(pc1 = critical AND pc2 = critical));

The following command can be used to prove this property.

% sal-smc -v 3 peterson mutex

In sal-smc, the default proof method for safety properties is forward reachability. The
option backward can be used to force sal-smc to perform backward reachability.

% sal-smc -v 3 --backward peterson mutex

...

proved.
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In this example, backward reachability needs fewer iterations to reach the fix point.
This property can also be proved using k-induction (option -i in sal-bmc). Actually

2-induction is sufficient to prove this property.

% sal-bmc -v 3 -d 2 -i peterson mutex

...

proved.

It is important to note that there are several trivial algorithms that satisfy the mutual
exclusion property. For instance, an algorithm that all jobs do not perform any transition.
Therefore, it is important to prove liveness properties. For instance, we can try to prove
that every process reach the critical section infinitely often. The following LTL formula
states this property:

livenessbug1: THEOREM system |- G(F(pc1 = critical));

Before proving a liveness property, we must check if the transition relation is total, that
is, if every state has at least one successor. The model checkers may produce unsound
results when the transition relation is not total. The totality property can be verified using
the sal-deadlock-checker.

% sal-deadlock-checker -v 3 peterson system

...

ok (module does NOT contain deadlock states).

Now, we use sal-smc to check the property livenessbug1.

% sal-smc -v 3 peterson livenessbug1

...

Step 0:

...

========================

Begin of Cycle

========================

...

Unfortunately, this property is not true. A counterexample for a LTL liveness property is
always composed of a prefix, and a cycle. For instance, the counterexample for the property
livenessbug1 describes a cycle where the process 2 does not perform a transition.

There is not guarantee that sal-smc will produce the shortest counterexample for a
liveness property. However, it is possible to use sal-bmc to produce the shortest counterex-
ample.

% sal-bmc -v 3 -it peterson livenessbug1

...

Counterexample:

...
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It is important to note that sal-bmc is usually more efficient for counterexample detec-
tion.

Since, livenessbug1 is not a valid property, we can try to prove the weaker liveness
property:

liveness1: THEOREM system |- G(pc1 = trying => F(pc1 = critical));

This property states that if process 1 is trying to enter the critical section, it will even-
tually succeed. The following command can be used to prove the property:

% sal-smc -v 3 peterson liveness1

...

proved.
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The Bakery Protocol

In this chapter, we specify the bakery protocol. The SAL files for this example are located
in the following subdirectory in the SAL distribution package: examples/bakery. The basic
idea is that of a bakery, where customers (jobs) take numbers, and whoever has the lowest
number gets service next. Here, of course, “service” means entry to the critical section.
The version of the bakery protocol described in this chapter is finite state, since we want to
model-check it using sal-smc, and sal-bmc. So, in our version there is a maximum “ticket”
value. Figure 5 contains the the header of the context bakery, and the type declarations.
The context bakery has two parameters: N is the number of (potential) customers, and
B is the maximum ticket value. Both values must be non-zero natural numbers. The
type Job_Idx is a subrange that is used to identify the customers. The type Ticket_Idx
is also a subrange, where 0 represents the “null” ticket. The type of the next ticket to be
issued (Next_Ticket_Idx) is also a subrange, where B+1 represents the “no ticket available”
condition. The type of the “resources” of the system (RSRC) is a record with two fields: data,
an array which stores the “ticket” of each job (customer); next-ticket, the value of the
next ticket to be issued. We say the system is saturated, when the field next_ticket is
equals to B+1. Each job (customer) has a control variable of type Job_PC, an enumerated
type consisting of the three values: sleeping, trying, and critical.

16
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5bakery{; N : nznat, B : nznat}: CONTEXT =

BEGIN

Job_Idx: TYPE = [1..N];

Ticket_Idx: TYPE = [0..B];

Next_Ticket_Idx: TYPE = [1..(B + 1)];

RSRC: TYPE = [# data: ARRAY Job_Idx OF Ticket_Idx,

next_ticket: Next_Ticket_Idx #];

Job_PC: TYPE = {sleeping, trying, critical};

...

END

Figure 6 contains auxiliary functions used to specify the bakery protocol. Function
min_non_zero_ticket returns the “ticket” of the job (customer) to be “served”, the possible
return values are:

• 0 when there is no job (customer) with a non-zero ticket (no customer condition).

• n > 0, where n is the minimal (non-zero) ticket issued to a job (customer).

The auxiliary (recursive) function min_non_zero_ticket_aux is used to traverse the
array rsrc.data. The function min is a builtin function that returns the minimum of
two numbers. The function can_enter_critical? returns true, when job_idx can en-
ter the critical section by comparing the customer’s ticket with the value returned by
min_non_zero_ticket. The function next_ticket issues a new ticket to the job job_idx,
that is, it updates the array rsrc.data at position job_idx, and increments the counter
rsrs.next_ticket. In SAL, expressions do not have side-effects. For instance, the update
expression x WITH [idx] := v results in an array that is equals to x, except that at posi-
tion idx it takes the value v. The function reset_job_ticket assigns the “null ticket” to
the job job_idx. The function can_reset_ticket_counter returns true, when it is safe to
reset the rsrc.next_ticket counter.
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6min_non_zero_ticket_aux(rsrc : RSRC, idx : Job_Idx) : Ticket_Idx =

IF idx = N THEN rsrc.data[idx]

ELSE LET curr: Ticket_Idx = rsrc.data[idx],

rest: Ticket_Idx = min_non_zero_ticket_aux(rsrc, idx + 1)

IN IF curr = 0 THEN rest

ELSIF rest = 0 THEN curr

ELSE min(curr, rest)

ENDIF

ENDIF;

min_non_zero_ticket(rsrc : RSRC) : Ticket_Idx =

min_non_zero_ticket_aux(rsrc, 1);

can_enter_critical?(rsrc : RSRC, job_idx : Job_Idx): BOOLEAN =

LET min_ticket: Ticket_Idx = min_non_zero_ticket(rsrc),

job_ticket: Ticket_Idx = rsrc.data[job_idx]

IN job_ticket <= min_ticket;

saturated?(rsrc : RSRC): BOOLEAN =

rsrc.next_ticket = B + 1;

next_ticket(rsrc : RSRC, job_idx : Job_Idx): RSRC =

IF saturated?(rsrc) THEN rsrc

ELSE (rsrc WITH .data[job_idx] := rsrc.next_ticket)

WITH .next_ticket := rsrc.next_ticket + 1

ENDIF;

reset_job_ticket(rsrc : RSRC, job_idx : Job_Idx): RSRC =

rsrc WITH .data[job_idx] := 0;

can_reset_ticket_counter?(rsrc : RSRC): BOOLEAN =

(FORALL (j : Job_Idx): rsrc.data[j] = 0);

reset_ticket_counter(rsrc : RSRC): RSRC =

rsrc WITH .next_ticket := 1;

Since the behavior of each job (customer) is almost identical, we use a parametric SAL
module to specify them (Figure 7). In this way, job[1] denotes the first job, job[2] the
second, and so on. The local variable pc contains the program counter of a job, and it is ini-
tialized with the value sleeping. The global variable rsrc contains the shared “resources”
of the system. The transition section is specified using three labeled guarded commands:
wakening, entering_critical_section, and leaving_critical_section. Labeled com-
mands are particularly useful in the generation of readable counterexamples. A guarded
command is composed of a guard, and a sequence of assignments. The guard is a boolean
expression, and a guarded command is said to be ready to execute when the guard is true.
If more than one guarded command is ready to execute, a nondeterministic choice is per-
formed. For instance, the guarded command wakening is ready to execute, when the current
value of pc is sleeping, and the system is not “saturated”. If the next value of a controlled
(local, output, and global) variable x is not specified by a guarded command, then x main-
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tains its current value, that is, the guarded command contains an “implicit” assignment
x’ = x. For instance, in the guarded command entering_critical_section the variable
rsrc is not modified.

7job [job_idx : Job_Idx]: MODULE =

BEGIN

GLOBAL rsrc : RSRC

LOCAL pc : Job_PC

INITIALIZATION

pc = sleeping

TRANSITION

[

wakening:

pc = sleeping AND NOT(saturated?(rsrc))

--> pc’ = trying;

rsrc’ = next_ticket(rsrc, job_idx)

[]

entering_critical_section:

pc = trying AND can_enter_critical?(rsrc, job_idx)

--> pc’ = critical

[]

leaving_critical_section:

pc = critical --> pc’ = sleeping;

rsrc’ = reset_job_ticket(rsrc, job_idx)

]

END;

Figure 8 specifies an auxiliary module that is used to initialize the shared variable rsrc,
and to reset the next-ticket counter when the system is “saturated”. Note that the array
literal [[j : Job_Idx] 0] is used to initialize the field data.

8controller: MODULE =

BEGIN

GLOBAL rsrc : RSRC

INITIALIZATION

rsrc = (# data := [[j : Job_Idx] 0], next_ticket := 1 #)

TRANSITION

[

reseting_ticket_counter:

can_reset_ticket_counter?(rsrc)

--> rsrc’ = reset_ticket_counter(rsrc)

]

END;

The whole system is obtained by composing N instances of the module job, and one
instance of the module controller (Figure 9). The auxiliary module jobs is the multi-
asynchronous composition of N instances of job, since the type Job_Idx is a subrange
[1..N]. Notice that each instance of job is initialized with a different index. In a multi-
asynchronous (and multi-synchronous) composition, all local variables are implicitly mapped
to arrays. For instance, the local variable pc of each job instance is implicitly mapped to
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pc[job_idx], where the type of pc in the module jobs is ARRAY Job_Idx OF Job_PC. This
kind of mapping is necessary, since users may need to reference the local variables of different
instances when specifying a property. The module system is the asynchronous composition
of the modules controller and jobs.

9jobs : MODULE = ([] (job_idx : Job_Idx): job[job_idx]);

system: MODULE = controller [] jobs;

The SAL context bakery is available in the SAL distribution package in the examples
directory.

4.1 Path Finder

The following command can be used to obtain a trace of an instance of the bakery protocol
with 3 jobs, and maximum ticket number equals to 7.

% sal-path-finder -v 2 --depth=5 --module=’bakery{;3,7}!system’
...

The option -v 2 sets the verbosity level to 2, the produced verbose messages allow users
to follow the steps performed by the SAL tools. The module to be simulated is specified
using the option --module because the context bakery is parametric.

Figure 10 contains a fragment of the trace produced by sal-path-finder. The trace
contains detailed information about each transition performed. For instance, the first tran-
sition was performed by the guarded command wakening of job 3 (job_idx = 3).
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10Step 0:

--- System Variables (assignments) ---

pc[1] = sleeping;

pc[2] = sleeping;

pc[3] = sleeping;

rsrc.data[1] = 0;

rsrc.data[2] = 0;

rsrc.data[3] = 0;

rsrc.next-ticket = 1;

------------------------

Transition Information:

(module instance at [Context: scratch, line(1), column(11)]

(module instance at [Context: bakery, line(116), column(8)]

(label reseting-ticket-counter

transition at [Context: bakery, line(111), column(10)])))

------------------------

Step 1:

--- System Variables (assignments) ---

pc[1] = sleeping;

pc[2] = sleeping;

pc[3] = sleeping;

rsrc.data[1] = 0;

rsrc.data[2] = 0;

rsrc.data[3] = 0;

rsrc.next-ticket = 1;

------------------------

...

4.2 Model Checking

The main property of the bakery protocol is mutual-exclusion, that is, it is not possible for
more than one job to enter the critical section at the same time. This safety property can
be stated in the following way:

mutex: THEOREM

system |- G(NOT (EXISTS (i : Job_Idx, j : Job_Idx):

i /= j AND

pc[i] = critical AND

pc[j] = critical));

The following command can be used to prove this property for 5 customers and maximum
ticket value equals to 15.

% sal-smc -v 3 --assertion=’bakery{;5,15}!mutex’
...

proved.

The assertion to be verified is specified using the option --assertion because the context
bakery is parametric. In sal-smc, the default proof method for safety properties is for-
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ward reachability. The option backward can be used to force sal-smc to perform backward
reachability.

% sal-smc -v 3 --backward --assertion=’bakery{;5,15}!mutex’
...

proved.

In this example, backward reachability needs fewer iterations to reach the fix point, but
it is less efficient, and consumes much more memory than forward reachability.

The default behavior of sal-smc is to build a partitioned transition relation composed of
several BDDs. However, the option --monolithic forces sal-smc (and sal-sim) to build a
monolithic (a single BDD) transition relation. The option --cluster-size=<num> controls
the generation of clusters in a partitioned transition relation, the idea is that two clusters
(BDDs) are only combined into a single cluster if their sizes are below the threshold.

% sal-smc -v 3 --monolithic --assertion=’bakery{;5,15}!mutex’
...

% sal-smc -v 3 --max-cluster-size=32768

--assertion=’bakery{;5,15}!mutex’
...

In sal-smc the BDD variables are (re)ordered to minimize the size of the BDDs. Variable
(re)ordering is performed in the following stages of sal-smc.

• First, an initial (static) variable order is built. The option --static-order=<name>
sets the algorithm used to build the initial order.

• After the construction of the transition relation, one or more forced variable reorder-
ing may be performed. The default behavior is one forced variable reordering. The
option --num-reorders=<num> sets the number of variable reorderings. The option
-r <name> sets the reordering strategy (the default strategy is sift). Use the option
--help to obtain the available strategies.

• Dynamic variable reordering is not enabled, but the option
--enable-dynamic-reorder can be used to enable it. Dynamic variable reordering
also uses the strategy specified by the option -r <name>.

It is important to note that there are several trivial algorithms that satisfy the mutual
exclusion property. For instance, an algorithm that all jobs do not perform any transition.
Therefore, it is important to prove liveness properties. For instance, we can try to prove
that every process reaches the critical section infinitely often. The following LTL formula
states this property:

liveness_bug: THEOREM

system |- (FORALL (i : Job_Idx): G(F(pc[i] = critical)));

Before proving a liveness property, we must check if the transition relation is total, that
is, if every state has at least one successor. The model checkers may produce unsound
results when the transition relation is not total. The totality property can be verified using
the sal-deadlock-checker.
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% sal-deadlock-checker -v 3 --module=’bakery{;5,15}!system’
...

ok (module does NOT contain deadlock states).

Now, we use sal-smc to check the property liveness_bug.

% sal-smc -v 3 --assertion=’bakery{;5,15}!liveness_bug’
...

Counterexample:

Step 0:

...

========================

Begin of Cycle

========================

...

Unfortunately, this property is not true. A counterexample for a LTL liveness property is
always composed of a prefix, and a cycle. For instance, the counterexample for the property
liveness_bug describes a cycle where at least one of the jobs do not perform a transition.
A simpler counterexample can be produced if we try to verify an instance of the protocol
with only two jobs.

% sal-smc -v 3 --assertion=’bakery{;2,3}!liveness_bug’
...

Counterexample:

...

It is also possible to use sal-bmc to produce the shortest counterexample.

% sal-bmc -v 3

--iterative

--assertion=’bakery{;5,15}!liveness_bug’
...

Counterexample:

...

In this example, sal-bmc finds the counterexample in less time. Actually, sal-bmc is
usually more efficient for counterexample detection.

Since liveness_bug is not a valid property, we can try to prove the weaker liveness
property:

liveness: THEOREM

system |- (FORALL (i : Job_Idx):

G(pc[i] = trying => F(pc[i] = critical)));

This property states that every job trying to enter the critical section will eventually
succeed. The following command can be used to prove the property:

% sal-smc -v 3 --assertion=’bakery{;5,15}!liveness’
...

proved.
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Synchronous Bus Arbiter

The synchronous bus arbiter is a classical example in symbolic model checking. The ex-
ample described here was extracted from McMillan’s doctoral thesis. The SAL files for
this example are located in the following subdirectory in the SAL distribution package:
examples/arbiter. respectively. The purpose of the arbiter is to grant access on each
clock cycle to a single client among a number of clients contending for the use of a bus (or
another resource). The inputs of the circuit are a set of request signals, and the output a set
of acknowledge signals. Normally, the arbiter asserts the acknowledge signal to the client
with lowest signal. However, as signals become more frequent, the arbiter is designed to
fall back on round robin scheme, so that every requester is eventually granted access. This
is done by circulating a token in a ring of arbiter cells, with one cell per client. The token
moves once every clock cycle. If a given client’s request persists for the time it takes for the
token to make a complete circuit, that client is granted immediate access to the bus. Fig-
ure 11 contains the header of the context arbiter, and the type declarations. The context
arbiter has a parameter n which is the number of clients. The type of n is a subtype of
NATURAL, since n must be greater than 1.

11arbiter{; n : {x : NATURAL | x > 1}}: CONTEXT =

BEGIN

Range: TYPE = [1..n];

Array: TYPE = ARRAY Range OF BOOLEAN;

...

END

Figure 12 contains the specification of a basic cell of the arbiter. Each cell has a request
input (req) and acknowledgement output (ack). The grant output (grant_out) of cell i
is passed to cell i+1, and indicates that no clients of index less than or equal to i are
requesting. Each cell has a local variable t which stores a true value when the cell has the
token. The t local variables form a circular shift register which shifts up one place each
clock cycle. Each cell also has a local variable w (waiting) which is set to true when the req
is true and the token is present. The value of w remains true while the request persists, until

24
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the token returns. At this time, the cell’s override (override_out) and acknowledgement
(ack) outputs are set to true. The override signals propagates to the cells below, negating
the grant input of cell 1, and thus preventing any other cells from acknowledging at the
same time.

12cell [initial_t : BOOLEAN]: MODULE =

BEGIN

INPUT req : BOOLEAN

INPUT token_in : BOOLEAN

INPUT override_in : BOOLEAN

INPUT grant_in : BOOLEAN

OUTPUT ack : BOOLEAN

OUTPUT token_out : BOOLEAN

OUTPUT override_out : BOOLEAN

OUTPUT grant_out : BOOLEAN

LOCAL t : BOOLEAN

LOCAL w : BOOLEAN

LOCAL aux : BOOLEAN

DEFINITION

token_out = t;

aux = w AND t;

override_out = override_in OR aux;

grant_out = grant_in AND NOT(req);

ack = req AND (aux OR grant_in)

INITIALIZATION

w = FALSE;

t = initial_t

TRANSITION

t’ = token_in;

w’ = req AND (w OR t)

END;

Figure 13 describes the composition of n instances of the module cell. The auxil-
iary module aux_module is used to provide a constant false value for the input variable
override_in of the first cell. It is also used to “connect” the negation of the output
override_out to the input grant_in in the last cell. The outputs and inputs of each cells
are mapped to arrays using the construct RENAME. The auxiliary arrays are declared using
the WITH construct. The construct || is the synchronous composition operator. So, the full
arbiter is the synchronous composition of the auxiliary module, a cell, and the multisyn-
chronous composition of n-1 cells, since the type of idx is the subrange [2..n].
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13aux_module : MODULE =

BEGIN

OUTPUT zero_const : BOOLEAN

INPUT aux : BOOLEAN

OUTPUT inv_aux : BOOLEAN

DEFINITION

zero_const = FALSE;

inv_aux = NOT(aux)

END;

arbiter: MODULE =

WITH OUTPUT Ack : Array;

INPUT Req : Array;

OUTPUT Token : Array;

OUTPUT Grant : Array;

OUTPUT Override : Array

(RENAME aux TO Override[n], inv_aux TO Grant[n]

IN aux_module)

||

(WITH INPUT zero_const : BOOLEAN

(RENAME ack TO Ack[1],

req TO Req[1],

token_in TO Token[1],

token_out TO Token[n],

override_in TO zero_const,

override_out TO Override[1],

grant_in TO Grant[1]

IN (LOCAL grant_out

IN cell[TRUE])))

||

(|| (idx : [2..n]):

(RENAME ack TO Ack[idx],

req TO Req[idx],

token_in TO Token[idx],

token_out TO Token[idx - 1],

override_in TO Override[idx - 1],

override_out TO Override[idx],

grant_in TO Grant[idx],

grant_out TO Grant[idx - 1]

IN cell[FALSE]));

The SAL context arbiter is available in the SAL distribution package in the examples
directory.

5.1 Model Checking

The desired properties of the arbiter circuit are:

• No two acknowledge outputs are true simultaneously.
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at_most_one_ack:

THEOREM arbiter |- G((FORALL (i : [1..n - 1]):

(FORALL (j : [i + 1..n]):

NOT(Ack[i] AND Ack[j]))));

• Every persistent request is eventually acknowledged.

every_request_is_eventually_acknowledged:

THEOREM arbiter |- (FORALL (i : [1..n]):

G(F(Req[i] => Ack[i])));

• Acknowledge is not true without a request.

no_ack_without_request:

THEOREM arbiter |- G((FORALL (i : [1..n]): Ack[i] => Req[i]));

The following commands can be used to prove the properties for an arbiter with 30 cells:

% sal-smc -v 3 --assertion=’arbiter{;30}!at_most_one_ack’
...

proved.

% sal-smc -v 3 --assertion=’arbiter{;30}!every_request_is_eventually_acknowledged’
...

proved.

% sal-smc -v 3 --assertion=’arbiter{;30}!no_ack_without_request’
...

proved.

The property no_ack_without_request can be proved using the k-induction rule in
sal-bmc. This induction rule generalizes BMC in that it requires demonstrating the safety
property p holds in the first k states of any execution, and that if p holds in every state of
executions of length k, then every successor state also satisfies this invariant.

% sal-bmc -v 3 -i

--assertion=’arbiter{;30}!no_ack_without_request’
...

proved.

Although at_most_one_ack is a safety property, it is not feasible to prove it using
induction, unless users provide auxiliary lemmas. The option --display-induction-ce
can be used to force sal-bmc to display a counterexample for the inductive step.

% sal-bmc -v 3 -i -d 2 --display-induction-ce

--assertion=’arbiter{;3}!at_most_one_ack’
...

k-induction rule failed, please try to increase the depth.

Counterexample:

Step 0:

...
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Inspecting the counterexample, you can notice that more than one cell has the token.
So, we may use the following auxiliary lemma to prove the property at_most_one_ack.

at_most_one_token:

THEOREM arbiter |- G((FORALL (i : [1..n - 1]):

(FORALL (j : [i + 1..n]):

NOT(Token[i] AND Token[j]))));

The following command instructs sal-bmc to use at_most_one_token as an auxiliary
lemma.

% sal-bmc -v 3 -i -d 1 --lemma=at_most_one_token

--assertion=’arbiter{;3}!at_most_one_ack’
...

proved.

It is important to observer that the previous proof is only valid if the prop-
erty at_most_one_token is valid. The following command proves the auxiliary lemma
at_most_one_token using 1-induction.

% sal-bmc -v 3 -i -d 1

--assertion=’arbiter{;30}!at_most_one_token’
...

proved.
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